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underlying shoot outgrowths
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John Innes Centre, Norwich Research Park, Norwich, United Kingdom

Abstract The development of outgrowths from plant shoots depends on formation of epidermal

sites of cell polarity convergence with high intracellular auxin at their centre. A parsimonious model

for generation of convergence sites is that cell polarity for the auxin transporter PIN1 orients up

auxin gradients, as this spontaneously generates convergent alignments. Here we test predictions

of this and other models for the patterns of auxin biosynthesis and import. Live imaging of

outgrowths from kanadi1 kanadi2 Arabidopsis mutant leaves shows that they arise by formation of

PIN1 convergence sites within a proximodistal polarity field. PIN1 polarities are oriented away from

regions of high auxin biosynthesis enzyme expression, and towards regions of high auxin importer

expression. Both expression patterns are required for normal outgrowth emergence, and may form

part of a common module underlying shoot outgrowths. These findings are more consistent with

models that spontaneously generate tandem rather than convergent alignments.

DOI: 10.7554/eLife.18165.001

Introduction
The development of plant shoots involves iterative formation of outgrowths. Shoot apical meristems

produce leaf primordia, which in turn provide the setting for the initiation of new outgrowths such as

serrations and leaflets. A common developmental module has been proposed to underlie the gener-

ation of both leaves and leaf-derived outgrowths (Barkoulas et al., 2008; Hay et al., 2006). A key

feature of the module is an epidermal site of high intracellular auxin, located at the centre of conver-

gence of the polarised auxin efflux carrier, PIN1 (Barkoulas et al., 2008; Benková et al., 2003;

Hay et al., 2006; Reinhardt et al., 2000, 2003; Scarpella et al., 2006).

The generation of polarity convergence sites has been most commonly explained by the up-the-

gradient model, whereby cells localise PIN1 towards the neighbouring cell with the highest concen-

tration of intracellular auxin (Bilsborough et al., 2011; Jönsson et al., 2006; Smith et al., 2006).

This mechanism is parsimonious because it can spontaneously generate spaced centres of polarity

convergence without additional assumptions about the presence of auxin sources or sinks. Molecular

mechanisms accounting for up-the-gradient behaviour have been proposed to involve detection of

auxin-induced stress gradients (Heisler et al., 2010) or auxin transport sensing (Cieslak et al.,

2015).

An alternative model for formation of sites of polarity convergences assumes that PIN1 becomes

localised to cell membranes in proportion to the rate of auxin efflux across the membrane (Mitchi-

son, 1980; Rolland-Lagan and Prusinkiewicz, 2005). A possible molecular mechanism for how cells

might sense auxin flux has recently been proposed (Cieslak et al., 2015). Although originally pro-

posed to account for venation patterns, this flux-based model has also been shown to be compatible

with the patterns of epidermal PIN1 polarity in the vegetative shoot apical meristem (Stoma et al.,

2008). Polarity convergence formation can be accounted for by assuming that sub-epidermal pro-

vascular PIN1 strands are induced in regions of elevated auxin and cause a local depletion of auxin

from the epidermis. This depletion causes PIN1 polarities to reorient and generate a site of conver-

gence, which then raises auxin levels at its centre through transport. A problem with this model is
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that it predicts a transient drop in intracellular auxin concentration during early stages of conver-

gence formation, which is not supported experimentally (Brunoud et al., 2012; Heisler et al.,

2005).

A further type of model for coordinating PIN1 orientations requires neither responding to auxin

gradients between cells nor sensing auxin flux. Instead, the indirect coupling model involves intracel-

lular polarity components that can establish cell polarity without external asymmetries in auxin distri-

bution (Abley et al., 2013). The two polarity components each exist in two forms: a diffusible

cytoplasmic form (A and B) and a more slowly diffusing membrane bound form (A* and B*). Interac-

tions between the components leads to A* and B* being localised at opposite ends of the cell. PIN1

is recruited to the membrane by one of the components (A*), causing a polarised PIN1 distribution.

Polarities of neighbouring cells are coupled indirectly through a feedback mechanism in which extra-

cellular auxin inhibits A* and thus PIN1 accumulation. This model results in polarities being oriented

away from regions of high extracellular auxin and towards regions with low extracellular auxin. It can

generate coordinated polarities for a field of cells, but it is unclear whether it can generate centres

of PIN1 convergence.

A convenient system for testing the models is the formation of ectopic 3D outgrowths from the

abaxial leaf surface of kanadi1kanadi2 (kan1kan2) mutants (Eshed et al., 2004). These outgrowths

can be considered as intermediates between leaf primordia and serrations. Similar to leaf primordia,

the outgrowths emerge perpendicular to the main plane of the tissue, and like serrations, they are

derived from the leaf. Because of their emergence from the abaxial lamina which can be readily

imaged, these outgrowths are more amenable to time-lapse imaging than serrations which are often

obscured by neighbouring cotyledon tissue and curving of the leaf edge. kan1kan2 outgrowths have

elevated intracellular auxin at their tips, and their formation depends on specific patterns of auxin

biosynthetic enzyme expression (Wang et al., 2011). They provide a test bed for studying conver-

gence site formation in a starting context which, unlike the apex, is not complicated by the prior

eLife digest Plants, unlike animals, are able to grow and develop throughout their lives. New

leaves and flowers are made from outgrowths that constantly form at the tip of growing shoots.

Groups of cells in the outer layer of the shoot tip arrange a protein called PIN1 so that it is more

abundant on the cell surfaces that face towards the centre of the group. PIN1 transports a hormone

called auxin out of plant cells and this “convergent” arrangement of PIN1 increases the levels of

auxin in cells at the centre of the group, leading to the formation of a new outgrowth. However, it is

not clear what causes these cells to position their PIN1 proteins in this way.

Several hypotheses have been proposed to explain how convergent patterns of PIN1 form. For

example, according to the “up-the-gradient” hypothesis, PIN1 is allocated to the end of a cell that is

next to a cell with a higher level of auxin. Abley et al. have now compared predictions from

computer models with new experimental data from a plant called Arabidopsis to evaluate three

hypotheses for how convergent PIN1 patterns form. A computer model based on the up-the-

gradient hypothesis naturally creates convergent PIN1 patterns, even if each cell starts off with the

same level of auxin. On the other hand, models based on two other hypotheses generate tandem

alignments of PIN1 so that auxin is transported in the same direction along lines of cells.

Next, Abley et al. tested these models using mutant Arabidopsis plants that develop outgrowths

from the lower surface of their leaves. These outgrowths form in a similar way to outgrowths at the

growing shoot tip, but in a simpler context. The experiments show that the patterns of where auxin

is produced in growing leaves were more compatible with the tandem alignment models than the

up-the-gradient model. This suggests that plants use a tandem alignment mechanism to form

convergences of PIN1 proteins that generate the local increases in auxin needed to make new

outgrowths.

This study only examined a single layer of cells on the plant surface. Other cell layers also show

highly organised patterns of PIN1 proteins, so a future challenge is to extend the approach to study

the entire 3D structure of new shoot outgrowths.

DOI: 10.7554/eLife.18165.002
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patterns of continual primordium initiation. However, the dynamics of auxin accumulation, PIN1

polarity and expression of auxin biosynthesis genes at early stages of kan1kan2 outgrowth emer-

gence have not been described. Moreover, the role of CUC genes, needed for formation of primor-

dia and serrations (Nikovics et al., 2006, Aida et al., 1997) has not been determined.

We show through time-lapse imaging that, similar to leaf primordia and serrations, kan1kan2 out-

growths are preceded by centres of PIN1 polarity convergence with elevated intracellular auxin.

These convergent polarities arise within the context of an initial proximo-distal PIN1 polarity field

and are promoted by CUC2 activity. An exploration of model behaviours reveals that models may

be classified into two types: those that spontaneously generate convergent aligments (e.g. the up-

the-gradient) and those that spontaneously generate tandem alignments (e.g. flux-based and indi-

rect coupling). Both types of model can account for the generation of an initial proximo-distal polar-

ity field, followed by the formation of convergences with elevated intracellular auxin. However,

unlike the convergent alignment model, tandem alignment models require the appearance of local

regions with elevated auxin import. In support of tandem alignment models, we show that expres-

sion of the LAX1 auxin importer is elevated in regions of polarity convergence at the tips of kan1-

kan2 outgrowths, and that AUX/LAX importer genes are required for normal kan1kan2 outgrowth

development. Additionally, we show that expression of YUCCA1 and YUCCA4 auxin biosynthetic

enzymes tends to be elevated in regions of polarity divergence in kan1kan2 and WT leaves, an

observation which is also most readily consistent with tandem alignment models. Thus, tandem

alignment models provide parsimonious explanations for the developmental module underlying out-

growth emergence.

Results

Formation of polarity convergence centres in the context of a
proximodistal polarity field
To characterise patterns of epidermal PIN polarity associated with the development of kan1kan2

outgrowths, a PIN1::PIN1:GFP reporter (Benková et al., 2003) was imaged on the abaxial surface of

wild-type (WT) and kan1kan2 leaves. Here we focus on PIN1 since this is the predominant epider-

mally expressed PIN that shows polar intracellular distributions in wild-type leaves (Guenot et al.,

2012). In young kan1kan2 leaf primordia, the epidermal PIN1 polarity pattern was similar to that

observed in WT: PIN1 polarities were oriented towards the leaf tip in both cases (Figure 1A,B). At

later stages of development, WT leaves retained a proximo-distal polarity pattern, and then no-lon-

ger showed detectable expression of the PIN1::PIN1:GFP reporter (Figure 2A). The loss of PIN1::

PIN1:GFP expression did not occur uniformly throughout the WT leaf because some patches of cells

retained expression for longer than other regions of the leaf (Figure 2A iii). By contrast to WT, kan1-

kan2 leaves maintained PIN1 expression until later stages of development and formed centres of

PIN1 polarity convergence, located at the tips of emerging ectopic outgrowths (Figure 2B iv and

C iv). Cells at the centres of convergence had highly polarised PIN1, oriented towards the interface

between three or four neighbouring cells (Figure 2C iv). To determine whether the centres of con-

vergence preceded outgrowth emergence, leaves were imaged over several days and cell lineages

that gave rise to convergences traced back through the time-course of the experiment (Figure 2C,

yellow dots, arrows and lines). This revealed that cells closest to the centre of convergence at the

outgrowth tip descended from one or two cells, which were already at a centre of polarity conver-

gence prior to outgrowth emergence (Figure 2B,C). Taken together, these findings show that, prior

to kan1kan2 outgrowth emergence, centres of polarity convergence develop within a proximodis-

tally oriented polarity field.

To investigate how the pattern of PIN1 polarity is related to the dynamics of intracellular auxin

accumulation, a DR5::GFP reporter (Benková et al., 2003) was imaged in kan1kan2 leaves over the

course of outgrowth development. At early stages, DR5::GFP signal was detected exclusively at the

leaf tip (Figure 3A), similar to the pattern described for the WT leaf (Mattsson et al., 2003;

Scarpella et al., 2006). Approximately one day prior to the first observation of an outgrowth, locally

elevated DR5::GFP signal was detected in groups of epidermal cells in the proximal region of the

lamina, where outgrowths typically form (Figure 3B i, yellow arrow). At later stages, these regions of

DR5::GFP expression persisted, and could be found throughout emerging outgrowths (Figure 3C,D,
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yellow arrows). Thus, both intracellular auxin activity maxima and centres of PIN1 polarity conver-

gence precede and predict sites of outgrowth emergence in kan1kan2 leaves.

CUC2 is required for normal kan1kan2 outgrowth development and
PIN1 convergence formation
cuc2 mutants fail to form centres of PIN1 polarity convergence in the leaf margin and do not

develop serrations (Bilsborough et al., 2011; Nikovics et al., 2006). To investigate whether, like

leaf serrations, kan1kan2 outgrowths depend on the CUC2 transcription factor, we generated kan1-

kan2cuc2 mutants. Leaves of kan1kan2 mutants consistently produce ectopic, finger-like outgrowths

from the abaxial leaf surface (97% of 160 leaves observed had at least one outgrowth, and the mean

number of outgrowths per leaf was 12.4) (Figure 4A,B). By contrast, mature leaves of kan1kan2cuc2

mutants only occasionally developed such outgrowths (only 8% of leaves observed developed out-

growths, and the mean number of outgrowths was 1.3) (Figure 4C,D). Some kan1kan2cuc2 leaves

also developed ridge-like thickenings of the abaxial surface or serrations in the leaf margin (Fig-

ure 4—figure supplement 1A,B).

To test if CUC2 is required for the formation of epidermal sites of PIN1 convergence, we gener-

ated kan1kan2cuc2 plants with the PIN1::PIN1:GFP reporter. Time-lapse imaging of PIN1::PIN1:GFP

in the abaxial epidermis of the first two leaves of this mutant revealed that centres of convergence

did not form (Figure 5). At early stages of leaf development, a proximodistal PIN1 polarity field was

observed (Figure 5 i), but similar to WT leaves, at later stages the expression of PIN1::PIN1:GFP was

lost throughout most of the abaxial epidermis (Figure 5B i–iii). Expression of the reporter was main-

tained in groups of epidermal cells which did not show centres of PIN1 convergence (Figure 5B ii).

In upper leaves of kan1kan2cuc2 mutants (leaves 3 to 6), ectopic primordium-like bumps were

occasionally observed on the abaxial leaf surface (in approximately 10% of leaves observed, n = 50)

(Figure 5C). These bumps were associated with centres of PIN1 polarity convergence linked with

sub-epidermal PIN1 strands. The frequency of centres of PIN1 convergence in kan1kan2cuc2

Figure 1. PIN1::PIN1:GFP expression in young WT and kan1kan2 leaf primordia. (A) WT primordium of leaf 1,

showing abaxial epidermis (a total of 10 leaves were imaged over 2 separate experiments). (B) As for A, but for a

kan1kan2 primordium (a total of 15 leaves were imaged over three separate experiments). White arrows indicate

inferred polarities. Dashed white lines indicate leaf outlines. Scale bars = 20 mm.

DOI: 10.7554/eLife.18165.003
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Figure 2. PIN1::PIN1:GFP polarity patterns in WT and kan1kan2 leaf development. Confocal images of the PIN1::PIN1:GFP marker in the abaxial

epidermis of the same WT leaf primordium imaged over a period of 2 days. Approximate leaf widths (measured from projections of the z stacks) are

given above each image. Times from the beginning of the experiment are: i) 0 hrs, ii) 12 hrs, iii) 36 hrs, iv) 48 hrs. Cells indicated by white dots in iii)

retain detectable expression of the marker for longer than other cells. This time-lapse data is supported by snapshot images taken for at least five

leaves at each developmental stage in a separate experiment. (B) Confocal images of the PIN1::PIN1:GFP marker in the abaxial epidermis of a

kan1kan2 leaf primordium, prior to and during the emergence of an ectopic outgrowth. For each time point, a surface view of the abaxial epidermis

(left) and a side view of a 3D rendering of the confocal z-stack (right) are shown. The side views allow the emergence of the outgrowth to be monitored.

The time relative to when an outgrowth could clearly be observed and the estimated leaf width are given above each image. Yellow arrows in iv)

indicate an ectopic centre of PIN1 polarity convergence at the tip of an emerging outgrowth. (C) Magnified images of the regions outlined by the

dashed grey rectangles in B, showing the development of the centre of PIN1 polarity convergence at the tip of the emerging outgrowth. Yellow dots,

arrows and lines indicate the cells that form the centre of convergence in iv). Arrows indicate inferred PIN1 polarities and lines indicate inferred axes of

Figure 2 continued on next page
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mutants was much lower than in the kan1kan2 background where approximately 95% of leaves 3–6

were observed to have at least one centre of PIN1 polarity convergence (n = 50). Thus, formation of

kan1kan2 outgrowths and polarity convergence sites is largely dependent on CUC2, although this

requirement can occasionally be circumvented.

CUC2 is ectopically expressed during PIN1 convergence formation in
kan1kan2 leaves
To gain insight into how CUC2 might promote the formation of epidermal centres of PIN1 conver-

gence, we characterised the expression pattern of CUC2 at the time when centres of PIN1 polarity

convergence form in kan1kan2 leaves. The CUC2::RFPer reporter (which causes expression of endo-

plasmic reticulum-localised RFP) was time-lapse imaged together with PIN1::PIN1:GFP in the abaxial

epidermis of the first two kan1kan2 leaves. At early stages of leaf development, when PIN1 polarities

are oriented distally, elevated expression of CUC2::RFPer was detected throughout the proximal

half of the lamina (Figure 6A,B). Before outgrowth emergence, expression of the reporter was lost

from cells towards the base of the leaf, and from early centres of PIN1 polarity convergence

(Figure 6C ii,D ii). This resulted in groups of cells within the proximal half of the lamina with CUC2::

RFPer expression, surrounded by non-CUC2::RFPer expressing cells. Later on these groups of

CUC2::RFP expressing cells were seen to be at the distal side of each epidermal PIN1 polarity con-

vergence (Figure 6D iii) and at the distal base of emerging outgrowths (Figure 6D iii, side view,

blue arrow head). This region is the boundary between the outgrowth and the abaxial lamina and is

analogous to the sinus region of serrations where CUC2 is also expressed (Nikovics et al., 2006;

Bilsborough et al., 2011).

Figure 2 continued

PIN1 distributions. Scale bars = 20 mm. The scale bar in C i) applies to all panels in C. This data is representative of tracking three out of three kan1kan2

leaves that developed ectopic outgrowths, each in a separate experiment, and with snapshot images from at least three leaves at each developmental

stage (in another separate experiment).

DOI: 10.7554/eLife.18165.004

Figure 3. DR5::GFP expression in a kan1kan2 leaf during outgrowth development. Confocal images of DR5::GFP in the same kan1kan2 leaf imaged

over a period of 3 days. Times relative to the first observation of an outgrowth, and leaf widths, are given above images. B ii, C ii and D ii show optical

sections through 3D renderings of confocal z-stacks. DR5::GFP (green) and auto-fluorescence plus CUC2::RFP (red) channels are shown (CUC2::RFP is

used to help show the leaf outline). Yellow arrows in D indicate the region of DR5::GFP activity at the tip of an outgrowth and yellow arrows in B and C

indicate the same DR5::GFP expressing cells tracked back in time prior to outgrowth emergence. White arrow heads indicate high DR5::GFP signal in

stipules. Scale bars = 50 mm. This data is representative of tracking 4 out of 4 kan1kan2 leaves that developed outgrowths (in two experiments), and of

snapshot data taken for at least 3 leaves at each of the developmental stages shown (in another separate experiment).

DOI: 10.7554/eLife.18165.005
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We next investigated how the expression pattern of CUC2::RFPer is related to the polarity of

PIN1 in emerging outgrowths. Inspection of PIN1 polarities using the PIN1::PIN1:GFP reporter

revealed that in developing outgrowths, cells close to the regions of elevated CUC2::RFPer expres-

sion frequently had PIN1 polarities oriented away the regions of high CUC2 expression (Figure 6E,

F). On the proximal side of the CUC2::RFPer expression domain (i.e. in cells of the emerging out-

growth), PIN1 polarities were oriented proximally, away from cells with high CUC2::RFP expression

and towards a centre of convergence at the outgrowth tip; while on the distal side of the CUC2::

RFPer expression domain, polarity appeared to point distally.

In contrast to kan1kan2 leaves, in WT, CUC2::RFPer expression was mainly restricted to the leaf

base and to regions of the margin associated with centres of PIN1 convergence involved in serration

development (Figure 6G; Bilsborough et al., 2011).

Thus, ectopic outgrowth development in kan1kan2 leaves is associated with the ectopic expres-

sion of CUC2 in the abaxial lamina. Similar to leaf serrations, the normal development of kan1kan2

outgrowths and the centres of PIN1 polarity convergence that precede them is dependent on

CUC2. We next compare different models of PIN1 polarity for their ability to capture the observed

PIN1 polarity patterns and for their consistency with the role of CUC2 in PIN1 polarity convergence

formation.

Figure 4. Leaf phenotype of the kan1kan2cuc2 mutant. (A) Whole kan1kan2 plant. (B) OPT images of a kan1kan2

leaf showing abaxial leaf surface. (C) Whole kan1kan2cuc2 plant. (D) OPT images of a kan1kan2cuc2 leaf. Scale

bars in A and C = 1 cm, scale bars in B and D = 1 mm. See Figure 4—figure supplement 1 for more details of

the kan1kan2cuc2 phenotype.

DOI: 10.7554/eLife.18165.006

The following figure supplement is available for figure 4:

Figure supplement 1. Abaxial ridges and serrations produced in kan1kan2cuc2 mutants.

DOI: 10.7554/eLife.18165.007
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PIN1 polarity models can be classified into two groups with different
behaviours
To test possible mechanisms that could underlie the observed epidermal polarity patterns, we com-

pare the abilities of up-the-gradient, flux-based and indirect coupling models to account for them.

We first characterise basic model behaviours, and then investigate the assumptions needed for each

model to capture the observed polarity patterns and how they may be tested experimentally.

The flux and up-the-gradient models are implemented as in previous publications, using the sim-

plifying assumption that auxin moves directly from cell to cell and omitting an explicit representation

of the cell wall (Bilsborough et al., 2011; Feugier et al., 2005; Jönsson et al., 2006; Rolland-

Lagan and Prusinkiewicz, 2005; Smith et al., 2006; Stoma et al., 2008). By contrast, we explicitly

represent the cell wall in our implementations of the indirect coupling model. In this model, we also

represent cell membranes and walls with several compartments per cell edge (allowing lateral diffu-

sion of components to be simulated). However, as in previous work, flux and up-the-gradient models

are implemented with a single compartment per edge and no lateral diffusion of components along

the cell edge (Bilsborough et al., 2011; Feugier et al., 2005; Jönsson et al., 2006; Rolland-

Lagan, 2008; Smith et al., 2006; Stoma et al., 2008). With the flux-based model, we assume a lin-

ear feedback between flux and PIN1 allocation, which tends to generate broad regions of coordi-

nated polarisation rather than narrow canalised strands that arise with super-linear feedback

(Feugier et al., 2005; Stoma et al., 2008). Details of all the model assumptions are given in the

Materials and methods.

Previously simulations of up-the-gradient and flux-based models have considered polarity pat-

terns in fields of cells all of which have the potential to polarise (Jönsson et al., 2006; Rolland-

Lagan, 2008; Smith et al., 2006; Stoma et al., 2008). However, to get a clearer view of the proper-

ties of each model, we begin by considering a group of cells having initially uniform auxin concentra-

tion and PIN1 distribution, and with only the central cell having the ability to relocate its PIN1

according to the rules specified by each model (Figure 7A–C). We find that the central cell becomes

polarised with both the up-the-gradient and flux-based models, assuming that there are small ran-

dom fluctuations (noise) in the initial concentrations of PIN1 in the cell membranes and that auxin

flux from the central cell can modify the initially homogeneous auxin concentration in the neighbour-

ing tissue (Figure 7A and B). In the up-the-gradient model, a cell edge with elevated PIN1 causes an

increase in auxin concentration in the neighbouring cell. This elevated auxin concentration in the

neighbour feeds back to cause an increase in PIN1 allocation to the cell edge (Figure 7A ii, purple

Figure 5. PIN1::PIN1:GFP in leaf one of the kan1kan2cuc2 mutant. (A) Confocal image of PIN1::PIN1:GFP in the abaxial epidermis of the first leaf

primordium of a kan1kan2cuc2 mutant. (B) Time-lapse confocal images of the abaxial side of the first leaf of a kan1kan2cuc2 mutant, taken at successive

time points. Bi, ii and iii are maximum intensity projections of the abaxial side of the leaf, and therefore signal from both epidermal and sub-epidermal

cell layers is combined. The data set shown here is representative of that obtained by tracking three kan1kan2cuc2PIN1::PIN1:GFP leaves (from three

different seedlings), and of snapshot images of 10 kan1kan2cuc2 first leaf primordia taken at each of the developmental stages shown. (C) Maximum

intensity projection of the abaxial side of leaf 5 of a kan1kan2cuc2 mutant, showing an example of epidermal centres of PIN1 convergence (on left and

right sides of the leaf). Scale bars = 50 �m.

DOI: 10.7554/eLife.18165.008
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Figure 6. Expression of CUC2::RFPer and PIN1::PIN1:GFP during kan1kan2 outgrowth development. (A) Confocal images of a CUC2::RFPer reporter in

the abaxial epidermis of a young kan1kan2 first leaf primordium. (B) Combined CUC2::RFPer (red) and PIN1::PIN1:GFP confocal channels for the same

leaf as in A. White arrows indicate inferred polarity orientations. (C) and (D) Time-lapse imaging of CUC2::RFP and PIN1::PIN1:GFP in the abaxial

epidermis of the first leaf of another seedling from that in A and B, over 58 hr prior to outgrowth development. C: CUC2::RFPer, D: combined channels,

as in B. Times relative to outgrowth emergence and approximate leaf widths are given above each image. The right-hand images in D ii and iii show

optical sections through 3D renderings of the confocal z-stacks at the position of the centre of convergence. White and yellow arrows indicate inferred

PIN1 polarity orientations. Yellow dots and arrows indicate the cells that gave rise to the outgrowth tip in C iii and D iii. Blue arrow heads in D iii

indicate elevated CUC2::RFPer expression distal to a centre of PIN1 convergence and at the base of the emerging outgrowth on its distal side. Data is

representative of that obtained by tracking outgrowth development in five kan1kan2 CUC2::RFPEer PIN1::PIN1:GFP leaves, in three separate

experiments. (E) Zoomed-in image of the region outlined by the dashed rectangle in D iii, showing PIN1 polarities within and surrounding the domain

of elevated CUC2::RFPer expression. (F) Confocal images of CUC2::RFPer (red) and PIN1::PIN1:GFP (green) associated with an ectopic kan1kan2

outgrowth at a later stage of development to that in C–E. Dotted blue line outlines the domain with elevated CUC2::RFPer expression at the distal

boundary between an outgrowth and the main lamina. (G) CUC2::RFPer expression in two WT first leaf primordia (ii also shows PIN::PIN1:GFP in green).

Blue arrow in ii indicates a site of elevated CUC2::RFPer expression in the leaf margin. Red signal in the centre of the lamina in ii) is non-ER localised

and therefore due to auto-fluorescence. Data is representative of of that obtained by imaging nine leaves at each of the developmental stages shown,

across two separate experiments. Scale bars = 50 �m. Dashed white lines indicate leaf outlines.

DOI: 10.7554/eLife.18165.009
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Figure 7. Comparison of basic behaviours of indirect coupling, flux-based and up-the-gradient models. (A–C) Investigating the ability of cells to

polarise in the absence of pre-established external asymmetries or polarisable neighbours for up-the-gradient (A), flux-based (B) and indirect coupling

(C) models. Panels i) show the initial state of the simulations. In each simulation, all cells initially have the same auxin concentration (indicated by the

intensity of green, where darker green indicates a higher concentration). In the case of up-the-gradient or flux-based models (A, B), noise is present in

the initial levels of PIN1 (shown by red lines at cell edges). In the case of indirect coupling (C), a single central cell has noise in the levels of A* and B*.

Panels ii) show intermediate states of the simulations, and panels iii) show the final states. In this and subsequent simulations, PIN1 polarisation is

indicated by black arrows, where the arrow points towards the region of the cell with highest PIN1. (A) For the up-the-gradient model, if a given cell

edge has slightly elevated PIN, this causes the juxtaposed neighbour to have an increased auxin concentration. This increased auxin concentration in

the neighbour feeds-back to cause increased PIN1 recruitment to the given cell edge (purple arrow in ii). (B) For the flux-based model, a cell edge with

a slightly elevated PIN1 concentration causes an increased auxin efflux rate. This increased auxin efflux feeds-back to cause an increased recruitment of

PIN1 to the given cell edge (purple arrow in ii). (C) For the indirect coupling model, polarity is generated independently from PIN1 and auxin through

A* and B* polarity components (purple arrow in ii) which in turn causes polarisation of PIN1. (D–F) Behaviour of up-the-gradient (D), flux-based (E) and

indirect coupling (F) models for 2D arrays of polarisable cells in the absence of pre-established asymmetries. D and E were initialised with noise in the

initial concentrations of auxin and F was initialised with noise in the levels A* and B* in the membrane. Details of all simulations can be found in the

Materials and methods. See Figure 7—figure supplement 1 for a further comparison of the requirements for polarisation.

DOI: 10.7554/eLife.18165.010

The following figure supplement is available for figure 7:

Figure supplement 1. Comparison of models’ ability to generate polarity for a cell surrounded by a fixed environment.

DOI: 10.7554/eLife.18165.011
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arrow). Assuming a limited pool of PIN1 in the cell, there will be a corresponding reduction in PIN1

allocation to other cell edges. In the flux-based model polarity arises because if one cell edge has

slightly elevated PIN1 (due to small random fluctuations), this edge will have a higher rate of auxin

efflux, which feeds back to favour further recruitment of PIN1 to the given cell edge (Figure 7B ii,

purple arrow). Recruitment of PIN1 to other cell edges is inhibited because the different edges of a

cell compete to export auxin into surrounding cells.

As previously described, the indirect coupling model also generates a polarised distribution of

PIN1 in the central cell (Figure 7C). This is due to the auto-activating and mutually inhibitory activi-

ties of membrane bound A* and B* polarity components, combined with relatively fast diffusion of

their cytoplasmic forms, which generates cell polarity. PIN1 is then recruited to the membrane with

high A* (Marée et al., 2006; Jilkine et al., 2007).

Thus, all three models have the potential to generate polarity in a single polarisable cell sur-

rounded by non-polarisable neighbours in an initially uniform field of auxin concentration. For the

indirect coupling model, this polarity arises through partitioning of the polarity components, while

for the flux-based and up-the-gradient models it arises because small fluctuations in PIN1 distribu-

tion create variations in auxin flux or concentrations which feed back to reinforce the polarity. There

is, however, a key difference between the up-the-gradient and other models. If auxin concentration

in the surrounding medium remains fixed throughout the simulation (equivalent to voltage-clamping

in neurophysiology), then the up-the-gradient model does not generate polarity (Figure 7—figure

supplement 1). In contrast, both the flux-based and indirect coupling model present polarity even

under such settings (Figure 7—figure supplement 1).

In a previous paper we overlooked the potential effect of feedback in the flux-based and up-the-

gradient models for single polarisable cells, and implicitly assumed that such cells would not polarise

(Abley et al., 2013). Moreover, we did not distinguish between lack of pre-established asymmetric

cues versus lack of being able to establish asymmetric cues (e.g. through auxin transport). The above

simulations show that this distinction needs to be taken into account to appreciate that, whereas the

flux-based model can present intracellular partitioning (i.e. establish polarity in the absence of asym-

metric cues or polarisable neighbours), the up-the-gradient model relies on its ability to change its

surrounding to establish and maintain polarization. Thus, both the flux-based and up-the-gradient

model share commonalities with the indirect coupling model regarding intracellular partitioning,

albeit through a more indirect mechanism involving auxin transport between cells.

We next consider an array of polarisable cells in the absence of pre-established asymmetries.

Noise is present in initial auxin concentrations (for the up-the-gradient and flux-based models), or in

the A*-B* polarity components (for the indirect coupling model), and all cells have the ability to relo-

cate PIN1 (Figure 7D–F). In this situation the up-the-gradient model generates convergent polari-

ties, in which spaced groups of cells orient their PIN1 polarity towards a central region (Figure 7D)

(Jönsson et al., 2006; Smith et al., 2006). This is because fluctuations lead to competing centres of

high auxin concentration which orient polarities towards them.

By contrast, the flux-based model tends to generate swirled patterns of polarity, in which polari-

ties are coordinated in tandem between neighbouring cells (Figure 7E). Convergent polarities are

disfavoured because if two cells have PIN1 oriented towards each other, both cells would experience

a low net auxin efflux across their PIN1-rich ends due to transport towards them from the opposing

neighbour. The low net auxin efflux would cause removal of PIN1 from the membranes and relocali-

sation to edges juxtaposed with a PIN1-free edge of a neighbouring cell, promoting tandem

alignments.

Similar to the flux-based model, indirect coupling also generates swirled patterns of polarity

(Figure 7F, Abley et al., 2013). Convergent alignments are disfavoured because if two cells have

PIN1 oriented towards each other, both cells transport auxin to the intervening extracellular space.

Accumulation of auxin in the extracellular space then inhibits A*, and therefore PIN1, in adjacent

membranes. This destabilises convergent polarities and favours tandem alignments.

Thus, in the absence of pre-established asymmetries, the models spontaneously generate two

types of polarity pattern. The flux-based and indirect coupling models both generate tandem align-

ments, and are subsequently referred to as tandem alignment models; while the up-the-gradient

model generates convergent alignments, and is subsequently referred to as a convergent alignment

model.
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We next explore the assumptions that need to be added to these models for them to account for

the epidermal PIN1 polarity patterns observed in WT and kan1kan2 leaves. With each model, we

attempt to capture the initial proximodistal polarity field observed in both WT and kan1kan2, where

polarities are aligned in tandem along the proximodistal leaf axis with high intracellular auxin at the

tip (Figure 1). We then explore the assumptions required for the formation of centres of PIN1 con-

vergence with elevated intracellular auxin, such as those observed on the abaxial side of the main

lamina at later stages of kan1kan2 leaf development (Figure 2B,C, Figure 3).

The convergent alignment model has been proposed to account for the initial centre of conver-

gence at the distal end of the leaf primordium (Jönsson et al., 2006; Smith et al., 2006). For a prox-

imodistal polarity field to be maintained within the growing primordium, the convergent alignment

model requires maintenance of an increasing auxin concentration gradient from the leaf base to the

leaf tip. One way this can be achieved is through net auxin removal at the leaf base. Net auxin

removal from a region of tissue could be achieved through a decreased rate of auxin biosynthesis,

an increased rate of transport away from the region, or an increased rate of auxin degradation or

conjugation. Here net removal is achieved using elevated auxin degradation rates (Figure 8A). Com-

bining this assumption with an initially elevated intracellular auxin concentration at the leaf tip, a

proximodistal polarity field can be maintained within an array. The intracellular auxin concentration is

kept high at the distal end of the array through transport towards this region (Figure 8A), similar to

experimental observations using the DR5::GFP reporter (Figure 3, Mattsson et al., 2003;

Scarpella et al., 2006). As the primordium increases in size (Figure 8B), the auxin concentration

tends to become shallow at a distance from the leaf tip. This can result in the spontaneous formation

of a centre of convergence with elevated intracellular auxin within the proximal region of the lamina

(Figure 8B), similar to that observed in kan1kan2 mutants (Figure 2B,C). The length of the tissue at

which the polarity reversal occurs depends on the parameters values used in the model. The failure

to form such a convergence centre in WT leaves could be explained by the PIN1 polarity pattern

becoming fixed at early stages of development, preventing polarity reorientation. However, how

this could be achieved is unclear, although it has been proposed that absence of CUC2 activity may

play a role in fixing polarity (Bilsborough et al., 2011).

In the flux-based model, polarities become oriented away from auxin sources and towards auxin

sinks. A proximodistal polarity pattern may therefore be generated with net auxin production (a

source) proximally and elevated net auxin removal (a sink) distally (Figure 9A). Here we simulate net

auxin production in proximal regions with an increased auxin biosynthesis rate, but it could also be

achieved with a reduced auxin degradation rate or increased auxin influx from (or decreased auxin

efflux to) tissues beyond those represented in the simulation. Likewise, net removal from the leaf tip

is simulated using elevated degradation, but could also occur through reduction in biosynthesis,

increase in conjugation, or via transport into underlying tissue layers (Bayer et al., 2009;

Scarpella et al., 2006).

With these assumptions the flux-based model generates a proximodistal pattern of polarities.

However, intracellular auxin concentrations tend to be lowest at the distal end of the tissue

(Figure 9A), inconsistent with experimental observations. This inconsistency can be avoided if the

leaf tip acts as a weak instead of a strong auxin sink. The initial drop in intracellular auxin at the tip is

then followed by a rise to a high level because of the transport towards this region (Stoma et al.,

2008; Walker et al., 2013). Another possibility is that the leaf tip has an elevated auxin import rate

as well as an elevated rate of auxin removal (Figure 9B). Elevated auxin import in the distal-most

cells causes increased auxin flux towards them, encouraging polarities to point distally. The elevated

import also causes the distal-most cells to accumulate intracellular auxin. Although auxin is synthes-

ised at the highest rate in the proximal-most files of cells, in the final state of the simulation, maximal

auxin concentrations are found at the distal end (Figure 9B). This is due to polar transport of auxin

away from the base, towards the leaf tip.

Similar to the flux-based model, with indirect coupling an initial proximodistal alignment of polari-

ties can be generated if the proximal region (leaf base) has net auxin production (here due to ele-

vated auxin biosynthesis generating high extracellular auxin), while the distal region (leaf tip) has

elevated net auxin removal (here due to elevated auxin degradation generating low extracellular

auxin). As in the flux-based model, elevated auxin degradation at the distal end of the tissue can

lead to low intracellular auxin in this region (Figure 9C). Combining an elevated rate of auxin import

at the leaf tip with the elevated degradation ensures low extracellular auxin concentrations in this
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region (encouraging polarities to point distally) and allows distal cells to accumulate intracellular

auxin (Figure 9D). Thus, the two tandem alignment models both have similar requirements for the

generation of a proximodistal polarity field with an intracellular auxin maximum in the distal region.

The predictions of the tandem alignment models for the generation of a proximodistal polarity

field differ from those of the convergent alignment model. Tandem alignment models predict that

the leaf base has net production of auxin, whilst the convergent alignment model predicts that this

region has net auxin removal. Also, tandem alignment models require that the leaf tip has an ele-

vated rate of auxin import and removal to account for high auxin in this region, whereas the conver-

gent alignment model has no such requirement.

A further difference is that unlike the convergent alignment model, the two tandem alignment

models do not spontaneously generate centres of polarity convergence upon an increase in tissue

size (the results of simulations shown in Figure 9A–D are similar for a range of tissue sizes). Thus,

with tandem alignment models, further assumptions are needed to generate centres of PIN1 polarity

convergence. With tandem alignment models, a site of convergence could arise by a cell having

higher levels of auxin removal, caused by export to underlying cells. This cell could be positioned in

Figure 8. Formation of a proximo-distal polarity field and centres of convergence in the convergent alignment

model. (A) Formation of a proximo-distal polarity field due to the presence of an elevated initial auxin

concentration at the leaf tip (orange cells) and an elevated rate of auxin removal from the leaf base (blue cells).

The graph shows the concentration of intracellular auxin for each cell in the column marked with the grey arrow.

(B) As for A, but for a larger tissue. A centre of polarity convergence forms within the proximal half of the lamina.

DOI: 10.7554/eLife.18165.012
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regions of elevated intracellular auxin, as proposed by Stoma et al, 2008. However, induction of

auxin removal alone can result in a drop in intracellular auxin concentration before convergence for-

mation (Stoma et al., 2008), and it is unclear how such regions of elevated intracellular auxin could

emerge in the proximal half of the kan1kan2 abaxial lamina.

One possible explanation for the generation of convergence sites in tandem alignment models is

that the proximal region of the abaxial lamina has an extended region of auxin biosynthesis. This

region corresponds to the region of ectopic CUC2::RFP expression in the proximal region of young

kan1kan2 primordia (Figure 6A,C i). In the tandem alignment models, auxin biosynthesis in this

region leads to a shallow peak in intracellular auxin proximal to the distal limit of auxin biosynthesis

(Figure 10A,C). This peak arises as a consequence of elevated auxin biosynthesis in this domain,

together with polarised transport which shifts the position of the peak distally. If intracellular auxin

Figure 9. Formation of a proximo-distal polarity field in the flux-based and indirect coupling models. (A) Formation of a proximo-distal polarity field in

the flux-based model due to the presence of elevated auxin biosynthesis at the leaf base (orange cells) and an elevated rate of auxin removal from the

leaf tip (blue cells). The graph on the right shows the concentration of intracellular auxin for the column marked with the grey arrow. (B) As for A, but

with elevated auxin import (green cell outlines) at the distal end of the tissue. (C) As for A, but for the indirect coupling model. (D) As for B, but for the

indirect coupling model.

DOI: 10.7554/eLife.18165.013
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Figure 10. Formation of centres of polarity convergence in the flux-based and indirect coupling models. (A) A proximo-distal polarity field is initially

established with the flux based model due to the presence of elevated auxin biosynthesis in the proximal half of the leaf (orange cells) and elevated

rates of auxin import and removal from the leaf tip (blue cells with green outlines). The graph on the right shows the concentration of intracellular auxin

for the column marked with the grey arrow. Note that there is a broad peak of intracellular auxin concentration within the proximal domain of elevated

auxin synthesis (black arrow). (B) Subsequent stage of the simulation in A. If it is assumed that intracellular auxin above a threshold concentration

induces elevated auxin import and removal, one or more cells within the proximal domain of elevated auxin biosynthesis are induced to have elevated

levels of import and removal. Neighbouring cells reorient their polarity to point towards the high import cells, which accumulate elevated levels of

intracellular auxin. (C) As for A), but for the indirect coupling model. (D) As for B), but for the indirect coupling model. See Figure 10—figure

supplement 1 for an alternative version of the indirect coupling model which incorporates D6-kinase like activity.

DOI: 10.7554/eLife.18165.014

The following figure supplement is available for figure 10:

Figure supplement 1. Incorporation of a D6 protein kinase-like activity into the indirect coupling model.

DOI: 10.7554/eLife.18165.015
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above a threshold concentration activates auxin import, a region with elevated import arises, leading

to a centre of polarity convergence (Figure 10B,D). Elevated auxin removal needs to arise in addi-

tion to elevated auxin import since import alone causes very high levels of intracellular auxin to accu-

mulate at the centre of convergence. This can disrupt convergence formation by preventing the

maintenance of low extracellular auxin (in the indirect coupling model), and by increasing total auxin

efflux from the central cell (in the flux-based model). Unlike the model of Stoma et al., 2008, where

only auxin removal is induced by high intracellular auxin, the combination of elevated auxin import

and removal helps to ensure that a dip in intracellular auxin concentration does not occur prior to

convergence formation.

D6 protein kinases are polarly localized in cells independently of PIN proteins and their phosphor-

ylation of PIN proteins is required for PIN-mediated auxin efflux (Barbosa et al., 2014,

Zourelidou et al., 2009). We added a representation of D6 kinase activity to the indirect coupling

model, as cell polarity in this system does not depend on PIN activity, and found that this does not

qualitatively affect model behavior (Figure 10—figure supplement 1).

This comparison of models gives rise to specific predictions that may be used to distinguish

between them experimentally. Tandem alignment models require that, at the leaf tip and at the tips

of outgrowths (where centres of convergence are located), the epidermis has elevated rates of auxin

import and auxin removal (which could be removal into underlying tissue layers). Locally elevated

auxin import is not required for the convergent alignment model, as sites with slightly elevated intra-

cellular auxin reinforce themselves. The tandem alignment models predict that the epidermis

towards the leaf base has elevated net auxin production, whilst the convergent alignment model

predicts that it has net auxin removal. Moreover, a broader band of auxin biosynthesis at the base of

the abaxial side of the kan1kan2 leaf provides one possible mechanism for inducing convergence

site formation with tandem alignment models.

Expression of auxin importers is elevated at the tips of kan1kan2
outgrowths and is required for their normal development
To test whether auxin import is elevated at centres of polarity convergence, we determined the

expression pattern of auxin importers in kan1kan2 mutant leaves. The AUX/LAX family of auxin

importers includes four genes in A.thaliana (AUXIN RESISTANT 1 (AUX1), LIKE AUXIN RESISTANT 1

(LAX1), LIKE AUXIN RESISTANT 2 (LAX2), and LIKE AUXIN RESISTANT 3 (LAX3)) which encode pro-

teins that actively transport auxin from the extracellular space into the cytoplasm (Parry et al., 2001;

Péret et al., 2012; Yang et al., 2006). We focus on AUX1 and LAX1 expression since both genes

are expressed in the leaf epidermis and therefore may contribute towards the auxin import activity

predicted by the models (Kasprzewska et al., 2015). Consistent with previous reports, expression

of LAX2::GUS was detected in leaf vascular tissue (Figure 11—figure supplement 1A) and expres-

sion of LAX3::GUS was absent from leaves but present in vascular tissue of hypocotyls and roots

(Bainbridge et al., 2008; Kasprzewska et al., 2015) (Figure 11—figure supplement 1B,C).

As expected from the tandem alignment models and consistent with a previous report, LAX1::

GUS was expressed at the tips of young wild-type leaf primordia, at the tips of serrations, and in the

midvein, but was absent from the rest of the leaf lamina (Kasprzewska et al., 2015) (Figure 11A). In

kan1kan2 leaves, LAX1::GUS was expressed in the same regions as in WT, but was also ectopically

expressed in groups of a few cells in proximal regions of the abaxial epidermis (Figure 11B). These

groups of cells were at the tips of developing outgrowths (Figure 11B ii and iii). To investigate

whether LAX1::GUS expression preceded outgrowth emergence, sections of kan1kan2LAX1::GUS

seedlings stained to reveal GUS activity were imaged. This revealed that local epidermal sites of ele-

vated LAX1::GUS expression were present in the abaxial lamina prior to outgrowth emergence

(Figure 11C i), consistent with a role of LAX1 in the generation of centres of polarity convergence.

Transverse sections also confirmed that LAX1::GUS expression at the tips of outgrowths is located in

the epidermis (Figure 11C ii).

In wild-type primordia, AUX1::AUX1:YFP was expressed in all cells of the abaxial epidermis, with

strongest expression at the leaf margin (Figure 11Di). On the adaxial leaf surface, expression was

excluded from most of the epidermis, but detected in cells close to and within the leaf margin

(Figure 11Dii). kan1kan2 leaves showed a similar pattern of AUX1::AUX1:YFP expression on their

adaxial surface, but the expression pattern in the abaxial epidermis differed from that in wild type.

Expression was found throughout distal regions of the leaf, but was concentrated in cells of
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Figure 11. Expression of LAX1::GUS and AUX1::AUX1:YFP in WT and kan1kan2 leaves. (A) Expression pattern of LAX1::GUS in WT leaves one and two.

LAX1::GUS was expressed at the tips of developing primordia (arrows in (i), black dashed lines indicate leaf outlines, arrow heads indicate stipules) (a

Figure 11 continued on next page
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emerging outgrowths in proximal regions (Figure 11E). Time-lapse confocal imaging revealed that,

prior to outgrowth formation, AUX1::AUX1:YFP expression was absent from proximal regions

(Figure 11Fiii,iv, yellow arrow), but became detectable as outgrowths emerged (Figure 11Fv–iv,

yellow arrows). Since centres of PIN1 polarity convergence form at least one day before outgrowth

emergence, these observations suggest that strong AUX1 expression is not involved in their initial

development. However, local elevation of AUX1 expression at outgrowth tips could play a role in

the stabilisation and maintenance of convergent polarities.

To investigate whether AUX/LAX auxin importers are required for the generation of ectopic out-

growths, we generated kan1kan2aux1lax1lax2lax3 hextuple mutants. Loss of all four AUX/LAX genes

caused a reduction in the mean number of outgrowths per rosette leaf from 12.4 (in kan1kan2

mutants) to 1.6 (in kan1kan2aux1lax1lax2lax3 mutants) (Figure 11G). To determine the contribution

of lax2 and lax3 to the loss of outgrowths, kan1kan2aux1lax1 quadruple and kan1kan2aux1lax1lax2

quintuple mutants were also generated. Loss of function of aux1 and lax1 alone caused a reduction

in the number of outgrowths compared with kan1kan2 plants (Figure 11G). This reduction was fur-

ther increased by a loss of LAX2 activity (kan1kan2aux1lax1lax2 mutants have a further loss of out-

growths [Figure 11G]). Since LAX2::GUS expression was only detected in sub-epidermal tissue, this

finding supports a role of sub-epidermal auxin importer expression in the generation of outgrowths.

LAX2-mediated sub-epidermal auxin import below centres of convergence could contribute to

removal of auxin from the centre of convergence. Despite the absence of LAX3::GUS reporter

expression in leaves, loss of LAX3 caused a further reduction in the number of outgrowths (kan1ka-

n2aux1lax1lax2 mutants generated more outgrowths than kan1kan2aux1lax1lax2lax3 mutants,

[Figure 11G]). This suggests that LAX3 may function redundantly with other members of the AUX/

LAX family in the generation of ectopic outgrowths, or that differences in genetic background

between the multiple mutants has an effect on outgrowth frequency (see Materials and methods).

Figure 11 continued

total of 6 plants (with 12 young leaves) were imaged across two separate experiments) and at the tips of serrations (ii) (arrows indicate serrations) (a

total of 9 plants (18 leaves) were imaged across three separate experiments). Leaf widths are given above images. (B) Expression pattern of LAX1::GUS

in kan1kan2 leaves. LAX1::GUS was expressed at the tips of primordia (i) (a total of 7 plants (14 leaves) were imaged across two separate experiments)

and at the tips of outgrowths (ii and iii) (arrows) (20 out of 21 leaves imaged across three separate experiments). ii) shows leaf 1, iii) shows leaf 3. (C)

Transverse sections through GUS stained kan1kan2 LAX1::GUS seedlings, showing points of LAX1::GUS expression before outgrowths have emerged

(black arrows in i) (data supported by serial sections of 3 other leaves at similar developmental stages in a separate experiment) and at the tips of

developing outgrowths (ii) (a total of 8 leaves were imaged across two separate experiments). Dashed orange line in i) indicates leaf outline. (D) AUX1::

AUX1:YFP expression in leaf 1 of WT, showing abaxial surface (i) (a total of 15 leaves were imaged across two separate experiments) and adaxial surface

(ii) (a total of 4 leaves were imaged in two separate experiments) of two different leaves. (E) AUX1::AUX1:YFP expression in leaf 1 of a kan1kan2 mutant,

showing abaxial surface. Arrow points to the tip of an emerging outgrowth with locally elevated AUX1::AUX1:YFP signal (a total of 9 leaves were

imaged, across three different experiments). (F) Time-lapse confocal imaging of AUX1::AUX1:YFP in the abaxial epidermis of the first leaf of a kan1kan2

seedling. White arrows mark the positions of cells that eventually gave rise to the AUX1::AUX1:YFP expressing cells in the developing serration on the

right side of the leaf. Yellow arrows mark the positions of cells which eventually gave rise to the tip of the ectopic outgrowth on the left side of the leaf.

Red and green images in iv), v) and vi) show side views, from the left hand side of the leaf (showing that the outgrowth emerged at the time point

shown in v). Red shows auto-fluorescence and a CUC2::RFP marker (used to show the leaf contours), and green shows AUX1::AUX1:YFP signal. Times

from the beginning of the experiment at which images were taken are: i) 0 hrs, ii) 22 hr 40 min, iii) 31 hr 10 min, iv) 46 hr 40 min, v) 55 hr 40 min, vi)

74 hr 40 min. Data is consistent with tracking experiments performed for two other kan1kan2 leaves that developed ectopic outgrowths, and with

snapshot images of at least 6 leaves before and after outgrowth emergence. (G) Mean number of outgrowths (+/- standard error of the mean) in

rosette leaves of kan1kan2 plants carrying mutant alleles of AUX/LAX genes. n numbers are: kan1kan2: 84 leaves from 10 plants, kan1kan2aux1lax1: 110

leaves from 10 plants, kan1kan2aux1lax1lax2: 136 leaves from 10 plants, kan1kan2aux1lax1lax2lax3:200 leaves from 10 plants. (H) Convergent alignment

model where elevated intracellular auxin causes elevated rates of auxin import and removal. The model is initialised with elevated auxin degradation at

the leaf base (blue cells) and an elevated rate of auxin import and degradation at the leaf tip (blue cells with green outlines). Centres of convergence

form within the proximal half of the lamina and when the intracellular auxin concentration exceeds a threshold level, an elevated rate of auxin import

and removal is induced (blue cells with green outlines). Scale bars = 50 mm. See Figure 11—figure supplement 1 for LAX2::GUS and LAX3::GUS

expression.

DOI: 10.7554/eLife.18165.016

The following source data and figure supplement are available for figure 11:

Source data 1. Counts of outgrowths used to generate Figure 11G.

DOI: 10.7554/eLife.18165.017

Figure supplement 1. Expression patterns of LAX2::GUS and LAX3::GUS.

DOI: 10.7554/eLife.18165.018
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The findings that auxin importers are expressed in the epidermis at the tips of leaves and emerg-

ing kan1kan2 outgrowths, and play a role in outgrowth development, meet the requirement of tan-

dem alignment models (Figures 9 and 10). In its most parsimonious form, there is no need for

elevated auxin import at the leaf tip or at subsequent centres of convergence with the convergent

alignment model (Figure 8B). However, this does not make the model incompatible with elevated

auxin import at these sites. If it is assumed that intracellular auxin above a threshold concentration

induces elevated auxin import and removal, elevated import and removal may be induced after con-

vergence formation (Figure 11H). This does not cause disruption of the centres of convergence. Dis-

tally oriented polarities near the leaf tip may also be achieved if these cells have an elevated rate of

auxin import and removal (rather than an elevated initial auxin concentration) (Figure 11H). Thus,

induction of auxin import by elevated intracellular auxin concentrations is compatible with the con-

vergent alignment model, though it renders the model less parsimonious.

CUC2 is required for locally elevated auxin import at kan1kan2
outgrowth tips
To test whether CUC2 could promote the formation of kan1kan2 outgrowths by influencing expres-

sion of auxin importers, we examined the expression of LAX1::GUS and AUX::AUX1:YFP reporters in

the kan1kan2cuc2 background. Sites of detectable LAX1::GUS expression were lost from the kan1-

kan2cuc2 lamina (Figure 12A). Additionally, in kan1kan2cuc2 leaves, AUX1::AUX1:YFP was

expressed uniformly throughout the abaxial lamina (Figure 12B), suggesting that CUC2 represses

the expression of AUX1 in the region surrounding outgrowths. In support of this conclusion, AUX1::

AUX1:YFP and CUC2::RFP were found to be expressed in mutually exclusive domains surrounding

outgrowths, with AUX1::AUX1:YFP expression being excluded from the region of high CUC2::RFP

expression in the outgrowth axil (Figure 12C).

These findings suggest that CUC2 is required for both the regions of elevated LAX1 expression

at outgrowth tips and the regions of low AUX1::AUX1:YFP expression surrounding emerging out-

growths. Thus, CUC2 contributes to locally elevated auxin import at the outgrowth tip. These find-

ings are compatible with a role for CUC2 in promoting convergence formation in the context of a

tandem alignment polarity mechanism.

Figure 12. LAX1 and AUX1 expression in kan1kan2cuc2 mutants. (A) Expression of LAX1::GUS in the abaxial surface of leaf 1 of a kan1kan2cuc2 mutant.

Data representative of images from ten seedlings in two separate experiments. (B) AUX1::AUX1:YFP expression in leaf 3 and 4 of a kan1kan2cuc2

mutant. Images representative of those taken from fifteen seedlings in two separate experiments. (C) CUC2::RFPer and AUX1::AUX1:YFP expression in

leaf 3 of a kan1kan2 mutant leaf i) AUX1::AUX1:YFP, ii) CUC2::RFPer (red) and AUX1::AUX1:YFP (green), iii) CUC2::RFPer. White arrows indicate region

of low AUX1::AUX1:YFP and elevated CUC2::RFPer expression at the distal base of developing outgrowths. Images representative of those taken from

six seedlings in two experiments. Approximate leaf widths are given above each image. Scale bars = 50 �m.
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kan1kan2 epidermal centres of convergence are coupled with sub-
epidermal PIN1 strands
We next test whether centres of convergence have elevated auxin removal rates as well as elevated

rates of import. One way that auxin could be removed from epidermal centres of convergence is

through transport into underlying tissue layers. In the shoot apical meristem, and in serrations, epi-

dermal centres of PIN1 convergence are linked with sub-epidermal strands of PIN1 expression with

PIN1 oriented auxin away from the epidermis (Hay et al., 2006; Reinhardt et al., 2003;

Scarpella et al., 2006). To test whether this is also the case for kan1kan2 outgrowths, we immuno-

localised PIN1 in transverse cross-sections of kan1kan2 leaves before (Figure 13A) and after

(Figure 13B) outgrowth emergence. At both time points, epidermal centres of convergence were

coupled with sub-epidermal strands of cells with elevated PIN1 expression (Figure 13). PIN1 in these

strands was polarised away from the epidermis, towards underlying tissue (Figure 13A), suggesting

that the strands provide a route for the removal of auxin from the epidermis. This observation

Figure 13. PIN1 immuno-localisation in transverse cross-sections of kan1kan2 leaves. (A) PIN1 immuno-localisation in a kan1kan2 leaf before outgrowth

emergence. i) and ii) are consecutive sections through the tissue (each section is 8 mm thick). A centre of PIN1 polarity convergence can be seen in i)

and the site of this convergence is shown with yellow arrows in ii). Arrows show the inferred directions of PIN1 polarity. The adaxial side of the leaf is at

the top of the image. 4 leaves with convergences were imaged across two separate experiments. (B) PIN1 immuno-localisation in a kan1kan2 leaf in

which outgrowths have begun to emerge. Dotted white lines indicate the strands of cells with elevated levels of PIN1 and the leaf outline. 3 leaves with

emerging outgrowths were imaged across two separate experiments. All scale bars = 50 �m, except those in the zoomed in panels in A, which are 10

�m.

DOI: 10.7554/eLife.18165.020
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provides a mechanism for auxin removal required for the tandem alignment models (Figure 10B,D).

It is compatible with the convergent alignment model (Figure 11H) but not required (Figure 8B).

Patterns of YUC1 and YUC4 expression are more consistent with
tandem alignment models
The epidermis at the leaf base is predicted to have net auxin production by the tandem alignment

models, and one way this could be achieved is through elevated auxin biosynthesis. To identify likely

locations of elevated auxin production in the leaf, we analysed the expression patterns of genes

encoding YUCCA auxin-biosynthesis enzymes in wild-type and kan1kan2 leaves. A.thaliana has six

YUCCA genes, three of which (YUCCA1 (YUC1), YUCCA2 (YUC2) and YUCCA4 (YUC4)) are

expressed in the leaf and are redundantly required for kan1kan2 outgrowth development

(Cheng et al., 2007, 2006; Wang et al., 2011). YUC1::GUS was previously reported to be

expressed at the base of wild-type leaf primordia, in all cell layers (Wang et al., 2011). Using altered

staining conditions to restrict the diffusion of the coloured GUS product, we found that the expres-

sion of this reporter was restricted mainly to outer cell layers at the base of the wild-type leaf, with

strongest expression on the adaxial side (Figure 14A i,ii). This adaxial expression was detected in

very young wild-type leaf primordia emerging from the shoot apical meristem (Figure 14B), and

expression at the leaf base persisted during leaf development (Figure 14C).

The expression of YUC1::GUS in the epidermis at the base of primordia matches the predictions

of the tandem alignment models. When this region of auxin production is added to the convergent

alignment model along with auxin import and removal at the leaf tip, the formation of a proximo-dis-

tal polarity field may be disrupted. A divergent polarity field may be established, with proximally ori-

ented polarities towards the base of the tissue, and distally oriented polarities towards the tip

(Figure 14D). This pattern emerges because cells with sufficiently elevated rates of auxin synthesis

at the leaf base acquire increased intracellular auxin concentrations, causing polarities to orient

towards them. However, it is possible that auxin biosynthesis in regions of YUC1 expression does

not contribute sufficiently to influence polarity.

Compared to wild-type leaves, kan1kan2 mutants tended to have a broader distribution of

YUC1::GUS in the proximal half of young leaf primordia (Figure 15A i). Transverse sections through

these primordia revealed that the expression domain extended further along the proximodistal axis

on the abaxial side of the leaf (the region where centres of convergence form) than on the adaxial

side (Figure 15A ii and iii). This is consistent with the tandem alignment models for convergence

formation, where a broad domain of auxin biosynthesis in the proximal region of the leaf induces

cells with elevated auxin import and removal, causing convergence formation (Figure 10). As in WT,

YUC1::GUS expression in the basal-most cells of the leaf persisted and could still be detected in

leaves of around 500 mm in width (Figure 15B iv). Consistent with a role of auxin biosynthesis in

inducing cells with elevated auxin import (Figure 10), the majority (98%) of kan1kan2yuc1yuc4

mutant rosette leaves failed to form outgrowths and lacked sites of elevated LAX1::GUS expression

within the lamina (Figure 15C, compare with Figure 11B).

Before kan1kan2 outgrowths were detected, YUC1::GUS was expressed in an additional band, a

few cells wide, running across the abaxial side of the leaf, approximately one-third of the way from

the leaf base (Figure 15B ii, black arrow). As outgrowths emerged, the band of YUC1::GUS expres-

sion was present at their base on their distal side (the outgrowth axil) (Figure 15B iii and iv, black

arrow) and absent from the outgrowth tips (Figure 15B iii, black arrow head).

The expression pattern of YUC1::GUS is similar to that of CUC2::RFP (Figure 6). To investigate

whether CUC2 functions upstream of YUC1 expression in kan1kan2 leaves, we generated kan1kan2-

cuc2 mutants with the YUC1::GUS reporter. In young kan1kan2cuc2 leaves, the proximal domain of

YUC1::GUS expression was reduced in size (Figure 15D i) and at later stages of leaf development

the ectopic band of YUC1::GUS expression was lost (Figure 15D ii). Thus, CUC2 is required for the

ectopic expression of YUC1::GUS in kan1kan2 leaves.

To test the potential effects of the pattern of YUC1::GUS expression close to outgrowths on PIN1

polarity patterns, we introduced a pre-pattern of auxin biosynthesis similar to that observed for

YUC1 into simulations of the different models. In tandem alignment models, a band of cells with ele-

vated auxin production introduced after the establishment of a proximodistal polarity field generates

a region of divergent polarities centred on the band with elevated production (Figure 16A,C). If the

band of elevated auxin biosynthesis is introduced together with a cell with elevated auxin
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import and removal located on the proximal side of the band, a polarity convergence tends to form

centred on the cell with elevated import and removal (Figure 16B,D). This behaviour is consistent

with the finding that centres of PIN1 polarity convergence are located at the tips of outgrowths,

where auxin importer expression is elevated.

Figure 14. YUCCA1::GUS expression in WT leaves. (A) Expression of YUC1::GUS in a WT leaf 1 primordium. i) abaxial epidermis (10 plants were

imaged across two separate experiments) ii) transverse cross-sectional view of leaf 1 at a similar developmental stage (adaxial (ad) is towards the top) at

the position marked by the dashed black line in i). Dashed orange line indicates leaf outline. Data consistent with serial sections taken through 3 other

leaves. (B) Transverse cross-sectional view of a YUC1::GUS expressing wild-type vegetative meristem. Yellow arrow with black outline indicates region of

YUC1::GUS expression at the boundary of an emerging primordium. Dashed orange lines indicate leaf primordia outlines. Data consistent with sections

from 3 meristems, across two separate experiments. (C) Expression of YUC1::GUS at a later stage of WT leaf development. Scale bars = 50 mm. 9 leaves

imaged across two separate experiments. (D) In the presence of elevated auxin production in the proximal row of cells (orange), and elevated auxin

import and removal in the distal row of cells (blue cells with green outline), the convergent alignment model generates a divergent polarity field, with

proximally oriented polarity in the proximal half of the tissue, and distally oriented polarity in the distal half.

DOI: 10.7554/eLife.18165.021
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Figure 15. Expression of YUCCA1::GUS in kan1kan2 leaves. (A) Expression of YUC1::GUS in kan1kan2 leaf one primordia. i) abaxial epidermis (a total of

15 leaves imaged, in three separate experiments), ii) transverse cross-sectional view of leaf 1 at a similar developmental stage, at an approximate

position along the proximo-distal axis marked with the pink dashed line in i, iii) transverse cross section through the same leaf as shown in ii), at the

approximate position marked with the green dashed line in i. Data consistent with serial sections for 3 other kan1kan2 leaves. (B) Expression of YUC1::

GUS in kan1kan2 mutant leaf 1 primordia at progressive stages of development. Black arrows indicate the band of YUC1::GUS expression, which is at

the distal base of outgrowths in iii) and iv). Arrow heads indicate an outgrowth tip which does not express YUC1::GUS. At least 8 leaves were imaged

for each developmental stage, across two experiments. (C) Expression of LAX1::GUS in first two leaves of a kan1kan2yuc1yuc4 seedling (a total of 20

Figure 15 continued on next page

Abley et al. eLife 2016;5:e18165. DOI: 10.7554/eLife.18165 23 of 43

Research article Developmental Biology and Stem Cells Plant Biology

http://dx.doi.org/10.7554/eLife.18165


In contrast to the tandem alignment models, when a band of elevated auxin synthesis is intro-

duced in the convergent alignment model, polarities tend to orient towards the band (Figure 16E).

This may occur even in the presence of a cell with locally elevated auxin import and removal on the

proximal side of the band if the rate of auxin import in this cell is not sufficiently high (Figure 16F).

This behaviour is inconsistent with the observation that PIN1 polarities orient towards regions with

elevated LAX1 and AUX1 expression, even in the presence of a band with elevated YUC1 expression

in the outgrowth axil.

According to these simulations, the patterns of YUC1-mediated auxin biosynthesis close to kan1-

kan2 outgrowths are more compatible with the tandem rather than convergent alignment models.

However, the presence of YUC expression in regions of polarity divergence at the leaf base and out-

growth axil may be reconciled with the convergent alignment model if it is assumed that YUC

expression appears as a consequence of low auxin in these regions following polarity reorientation.

Consistent with this possibility, the expression of YUC1, YUC2, YUC4 and YUC6 has been shown to

be down-regulated by auxin, and upregulated by expression of an auxin biosynthesis inhibitor

(Suzuki et al., 2015). Given such negative feedback acting upon YUC expression, it is possible that

local auxin-biosynthesis by YUCs does not raise auxin concentrations sufficiently to affect PIN1

polarities.

YUC2::GUS and YUC4::GUS were previously reported to be expressed at the tips of wild-type

leaves, in contrast to expression of YUC1::GUS which is expressed at the base (Wang et al., 2011).

This expression pattern of YUC2::GUS and YUC4::GUS is more consistent with the convergent align-

ment model. However, at early stages of leaf development, when YUC1::GUS is expressed at the

leaf base, YUC4::GUS and YUC2::GUS were found to be absent from the leaf tip (Wang et al.,

2011). The proximo-distal PIN1 polarity pattern was only observed in young WT primordia

(Figure 1A, Figure 2A). This suggests that, at the time that the proximodistal PIN1 polarity field is

observed, the leaf base is the main site of YUC-mediated auxin biosynthesis.

YUC2::GUS and YUC4::GUS were also previously reported to be expressed at the tips of kan1-

kan2 outgrowths (whether this expression domain is epidermal or sub-epidermal was not shown).

However, whether expression of these genes in regions of polarity convergence precedes out-

growths or appears later was not determined. We therefore performed time-lapse imaging of a

YUC4::GFP reporter to capture the dynamics of YUC4 expression (Figure 17). This revealed that,

approximately one day prior to outgrowth emergence, when centres of PIN1 convergence were pre-

viously determined to form, this reporter was expressed in the epidermis, distal to where outgrowths

subsequently emerged (Figure 17 i,ii). As outgrowths emerged, they maintained epidermal expres-

sion of YUC4 in their axils, the region where YUC1 is also expressed (Figure 17 iii,iv, compare with

Figure 15B ii–iv). Emerging outgrowths also showed a second region of expression of YUC4::GFP in

epidermal and sub-epidermal tissue at the outgrowth tip (Figure 17 iii,iv). These findings suggest

that, at the time that centres of PIN1 polarity convergence form, YUC4 is expressed in the epidermis

distal to the centre of convergence. YUC4 expression at the outgrowth tip then appears after con-

vergence formation. The epidermal expression domain distal to polarity convergences in the out-

growth axil is similar to that inferred for YUC1 and is more consistent with tandem than convergent

alignment models. Similar to YUC1, expression of YUC4::GFP within the abaxial lamina was lost in

the kan1kan2cuc2 background (Figure 17B).

Discussion
kan1kan2 outgrowths arise ectopically as a consequence of reduced abaxial identity, and thus differ

from leaf primordia and serrations. Despite these differences, we show that general elements of out-

growth formation apply to shoot outgrowths (kan1kan2 outgrowths, primordia and serrations)

regardless of their specific context. 1) Similar to leaf primordia and serrations (Bilsborough et al.,

2011; Hay et al., 2006; Reinhardt et al., 2003; Scarpella et al., 2006), kan1kan2 outgrowths are

Figure 15 continued

leaves were imaged in three separate experiments). (D) Expression of YUC1::GUS in leaf one of kan1kan2cuc2 mutant seedlings (15 seedlings were

imaged at each developmental stage across three separate experiments). Scale bars = 50 mm.
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Figure 16. Effect of a band of locally elevated auxin biosynthesis on flux-based, indirect coupling and up-the-gradient models. (A) Flux-based model. A

proximodistal polarity field is initially established due to elevated auxin production at the leaf base (orange cells) and elevated auxin import and

Figure 16 continued on next page
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preceded by epidermal centres of PIN1 polarity convergence. By tracking cells, we show that these

centres go on to form outgrowth tips, similar to results from tracking emerging floral primordia

(Heisler et al., 2005). Thus, as the outgrowth develops, the centre of convergence corresponds to

the distal end of a proximodistal field. 2) Like primordia and serrations (Bilsborough et al., 2011;

Heisler et al., 2005), kan1kan2 outgrowths are preceded by locally elevated intracellular auxin. 3)

Expression of YUCCA auxin biosynthesis enzymes is elevated in the boundaries that separates

leaves, serrations and kan1kan2 outgrowths from the tissues that they emerged from. The axillary

boundary (located in the axils of primordia and distal sides of serrations and kan1kan2 outgrowths)

has divergent PIN1 polarity orientations (Hay et al., 2006; Heisler et al., 2005; Wang et al., 2011).

In the case of YUC4, we show that axillary expression in kan1kan2 outgrowths precedes outgrowth

emergence. 4) Centres of polarity convergence at the tips of leaves (Bainbridge et al., 2008), serra-

tions (Kasprzewska et al., 2015) and kan1kan2 outgrowths are associated with regions of elevated

epidermal expression of the auxin importer, LAX1. 5) Epidermal centres of PIN1 polarity conver-

gence are coupled to sub-epidermal strands of cells with elevated PIN1 expression and inwardly ori-

ented polarity (Bayer et al., 2009; Hay et al., 2006; Reinhardt et al., 2003). 6) Like primordia and

serrations (Nikovics et al., 2006; Aida et al 1997), formation of outgrowths is promoted by CUC

genes which become strongly expressed distal to the outgrowth. We show that in kan1kan2 leaves,

CUC2 promotes formation of PIN1 convergence sites and both elevated YUCCA and auxin importer

expression.

Taken together, these results support the hypothesis that a common module is associated with

the development of outgrowths. This outgrowth module operates iteratively, first in the creation of

the leaf with a proximodistal polarity field, and then in the creation of leaf outgrowths such as serra-

tion and leaflets (Hay et al.,2006; Bilsborough et al., 2011), or ectopic kan1kan2 outgrowths.

Although centres of convergence associated with elevated intracellular auxin and sub-epidermal

PIN1 strands were previously shown to be associated with primordia and serrations, here we extend

the notion of the outgrowth module to include elevated auxin biosynthesis and auxin import (fea-

tures 3, 4 and 6 above) and show that it also applies to outgrowths emerging from the plane of the

leaf. The observation that a loss of PIN1 convergences and outgrowths in kan1kan2cuc2 mutants is

correlated with a loss of ectopic auxin biosynthesis and import supports an important role of these

features in the outgrowth module.

These observations raise the question of how the various features of the outgrowth module are

generated. We found that models for PIN1 convergence site formation (feature 1) fall into two

groups. Convergent alignment models (e.g. up-the-gradient) spontaneously generate spaced

centres of polarity convergence in a in a field of cells with initially uniform auxin distribution

(Figure 7D, Jönsson et al., 2006; Smith et al., 2006; Cieslak et al., 2015; Heisler et al., 2010). By

contrast, tandem alignment models (e.g. flux-based and indirect coupling) generate swirled patterns

of tandemly aligned polarity in this context (Figure 7E,F).

Convergent alignment models provide the most parsimonious explanation for the observed PIN1

polarity (feature 1), intracellular auxin (feature 2), and spacing of outgrowths, as all of these aspects

arise naturally in a uniform field (Bilsborough et al., 2011; Jönsson et al., 2006; Smith et al.,

2006). However, there is no expectation of elevated expression of auxin biosynthesis enzymes in the

regions of polarity divergence in the axils of leaves and their outgrowths (feature 3). Indeed, auxin

biosynthesis in these regions can cause polarities to orient towards regions of elevated auxin biosyn-

thesis, rather than away from them as is observed experimentally (Hay et al., 2006; Heisler et al.,

Figure 16 continued

removal at the leaf tip (blue cells with green outline). After distally oriented polarities are established, 3 cells are given an elevated rate of auxin

biosynthesis (orange cells), causing polarities to diverge away from this region. Graph shows intracellular auxin concentrations for the column of cells

marked with the grey arrow. (B) As for A, but with a cell with elevated auxin import and removal (blue cell with green outline) on the proximal side of

the band with elevated auxin synthesis. (C) As for A, but for the indirect coupling model. (D) As for B, but for the indirect coupling model. (E) Up the

gradient model. A proximo-distal polarity field is initially established through elevated auxin removal at the leaf base (blue cells) and an initially

elevated auxin concentration at the leaf tip (same initial conditions as Figure 8A). Three cells (isolated orange cells) are then given an elevated auxin

biosynthesis rate, causing polarities to orient towards them. (F) As for E, but a cell with elevated auxin import and removal is also added on the

proximal side of the band with elevated auxin synthesis.
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Figure 17. Time-lapse imaging of YUC4::GFP in kan1kan2 leaves. (A) Confocal images of YUC4::GFP in the same

kan1kan2 leaf imaged over a period of 3 days. Times relative to outgrowth emergence, and leaf widths, are given

above images. Yellow circles indicate cells located distal to the outgrowth after its emergence, and their ancestors

prior to outgrowth emergence. Note that these cells express YUC4::GFP before and after outgrowth emergence,

but the region of expression at the outgrowth tip only appears following outgrowth emergence. Data is

representative of tracking 5 out of 5 kan1kan2 leaves that developed ectopic outgrowths across two experiments.

(B) YUC4::GFP expression in leaf one of a kan1kan2cuc2 mutant. Data representative of 13 leaves imaged in two

separate experiments. Arrow head indicates stipule. Scale bars = 50 mm.
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2005; Wang et al., 2011). The convergent alignment model may be reconciled with the observed

expression of YUC1 and YUC4 auxin biosynthesis genes in regions of polarity divergence if it is

assumed that this expression does not raise auxin levels sufficiently to influence polarity. Rather than

playing a role in polarity reorientation, YUC expression may then be a consequence of low auxin in

these regions following polarity reorientation, as expression of YUC genes has been shown to be

down-regulated by auxin (Suzuki et al., 2015).

There is also no expectation of elevated auxin import in regions of polarity convergence (feature

4) for the convergent alignment model. The parsimony of the convergent alignment model arises

from the reinforcement of auxin levels at centres of convergence through auxin transport without

any need for additional mechanisms, such as elevated auxin import. Elevated auxin importer expres-

sion can be incorporated within a convergent alignment model, by postulating that high levels of

intracellular auxin induce auxin import. This approach was adopted to account for the effect of auxin

import on leaf serration development, and with suitable parameters auxin import can play a role in

reinforcing convergent alignment (Kasprzewska et al., 2015).

However, with some convergent alignment models, incorporation of auxin import may have a dis-

ruptive effect. It has been proposed that cells may orient polarity up auxin gradients by responding

to auxin levels in their neighbours indirectly by sensing auxin flux (Cieslak et al., 2015). Assuming all

cells in a tissue have an equal capacity to import and export auxin, cells with elevated intracellular

auxin concentration will have higher net rates of auxin flux away from them, into neighbouring cells.

This flux could be sensed to orient PIN1 allocation up the auxin gradient. However, this behaviour

would be disrupted by elevated levels of auxin importer expression at centres of convergence,

because elevated auxin import in the high auxin cells would reduce the net flux from them into their

neighbours.

Based on PIN1 data and intracellular auxin levels alone (features 1 and 2), tandem alignment

models provide a less parsimonious explanation than convergent alignment models. Special mecha-

nisms need to be postulated for tandem alignment models for PIN1 convergence sites to form, such

as induction of regions with elevated auxin import and removal. The observation of sub-epidermal

strands of cells with inwardly oriented PIN proteins (feature 5) fits the requirement of auxin removal

for convergence formation in the tandem alignment models. However, auxin removal alone, through

formation of sub-epidermal PIN1 strands (Stoma et al., 2008) would lead to a transient dip in epi-

dermal auxin concentrations, which is not observed experimentally (Brunoud et al., 2012;

Heisler et al., 2005). Here, in the simulations we present, the transient dip does not occur if centres

of convergence have elevated auxin import in addition to removal. The observed elevated levels of

auxin import at convergence centres (feature 4) is therefore an expected feature for tandem align-

ment models. A functional role for auxin import is also supported by the observed disruption of out-

growth initiation in aux1lax1lax2lax3 meristems (Bainbridge et al., 2008) and

kan1kan2aux1lax1lax2lax3 leaves. A further property of tandem alignment models is that polarities

tend to become oriented away from auxin sources. It is therefore expected that sites of divergent

polarity, such as the axillary regions of outgrowths would be auxin sources, compatible with elevated

expression of auxin biosynthesis enzymes in these regions (feature 3). Also supporting these predic-

tions of tandem alignment models, loss of ectopic auxin biosynthesis and import in the kan1kan2-

cuc2 mutant correlates with a loss of PIN1 convergence points and ectopic outgrowths.

Thus, when the auxin import and biosynthesis data are considered along with the PIN1 polarity

and intracellular auxin levels, tandem alignment models may give a more a parsimonious explanation

for the data as a whole than convergent alignment models.

The contribution of CUC gene activity (feature 6) can be incorporated into both convergent and

tandem alignment models. Our data suggest that in wild-type leaves CUC2 expression is excluded

from the abaxial lamina and confined to serrations by the action of abaxial identity determinants

including KAN1 and KAN2. According to the convergent alignment model, CUC2 may be required

to enable PIN1 polarity to become reoriented rather than remaining fixed in the abaxial lamina as

occurs in wild type (Bilsborough et al., 2011). According to the tandem alignment models, ectopic

expression of CUC2 could drive auxin synthesis (YUCCA expression) and induction of ectopic sites

of elevated auxin import and removal, and thus centres of convergence. CUC2 expression distal to

the outgrowth could also maintain these regions as sites of high auxin synthesis and polarity

divergence.
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The results presented here highlight distinctive elements in models for tissue cell polarity in plants

and animals. The ability of all three plant models analysed to generate cell polarity in a non-polaris-

ing context (Figure 7A–C) contrasts with models of animal planar cell polarity (Strutt and Strutt,

2009), where polarity is proposed to either be dependent on pre-established asymmetric cues

(Amonlirdviman, 2005; Fischer et al., 2013; Le Garrec et al., 2006) or polarisable neighbours

(Burak and Shraiman, 2009). Models may therefore be classified into two broad categories: those in

which polarity of a cell depends on a polarising environment and those that do not (Figure 18).

Although most animal models belong to the first category, a version that does not require a polaris-

ing environment, termed direct coupling, has been proposed (Abley et al., 2013).

For plant models, cells may polarise in a non-polarising environment in two ways. One is through

small fluctuations in polarity leading to altered auxin distribution or flux which then feeds back to

enhance polarity. This occurs in the up-the-gradient and flux-based models (Figure 7A,B

[van Berkel et al., 2013]). It contrasts with current animal models in which polarity does not feed

back to influence the distribution of the extracellular ligand. Another class of plant models proposes

that cells become polarised without requirement for altered distribution or flux of auxin, through

processes internal to the cell, as assumed for indirect coupling (Figure 7C). It remains to be seen

whether the indirect coupling model can also capture the generation of sub-epidermal strands of

cells with elevated levels of membrane-localised PIN1 (feature 5). Such strands are observed experi-

mentally during pro-vascular development and can be accounted for with a flux-based model assum-

ing superlinear feedback between flux and PIN1 allocation (Scarpella et al., 2006; Bayer et al.,

2009; Rolland-Lagan and Prusinkiewicz, 2005; Feugier et al., 2005; Stoma et al., 2008).

Our analysis illustrates the value of comparing multiple models when analysing experimental data

rather than focusing on one in isolation. Each model alone can be modified to account for experi-

mental observations, showing that fitting to data is not conclusive. However, models may differ in

Figure 18. Classification of plant and animal polarity models. Models of plant and animal epidermal polarity may be classified according to whether

they require the presence of pre-established asymmetries or polarisable neighbours (referred to as a polarising environment) for cell polarity to arise.

All plant models tested can generate cell polarity without a polarising environment, whilst animal models except the direct coupling model ([4]

[Abley et al., 2013]) either require an asymmetric signal ([1] [Le Garrec et al., 2006] [2] [Amonlirdviman, 2005]) or polarisable neighbours

([3] [Burak and Shraiman, 2009]) for cell polarity to arise. A further classification is made according to the behaviours of groups of cells in the absence

of pre-established asymmetries. In this context, the indirect coupling ([5] [Abley et al., 2013]) and flux-based ([6] [Mitchison, 1980; Rolland-

Lagan and Prusinkiewicz, 2005; Stoma et al., 2008]) models of plant polarity generate swirled patterns of polarity with tandem alignments between

cells. In contrast, the up-the-gradient model ([7] [Bilsborough et al., 2011; Jönsson et al., 2006; Smith et al., 2006]) generates convergent alignments

of cell polarities. The stress-based model of PIN1 polarity ([8] [Heisler et al., 2010]) also fits in the convergent alignment category as it generates

similar behaviours with respect to auxin concentrations to the up-the-gradient model. The animal models that are capable of polarising in the absence

of pre-established asymmetries generate tandem alignments of polarities ([4] direct coupling model [Abley et al., 2013], and (3) Burak and Shraiman,

2009).

DOI: 10.7554/eLife.18165.025
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the predictions they make prior to the data being obtained, and the parsimony with which experi-

mental data can be accounted for. Moreover some models may make very similar predictions even

though underlying molecular mechanisms are different. For example, two types of tandem alignment

model - flux-based and indirect coupling - give similar predictions for auxin import and synthesis.

Similarly, a concentration-based or stress-based version of the convergent alignment model gives

similar predictions for auxin turnover. Other types of experiment will be needed to discriminate

between these further levels of explanation.

Materials and methods

Plant material and growth conditions
All kan1kan2 mutants carry kan1-2 and kan2-1 alleles in the Landsberg erecta (Ler-0) background

(Eshed et al., 2001) except in the kan1kan2yuc1yuc4 background, where plants carry kan1-11 and

kan2-5 alleles (Wang et al., 2011). The cuc2 mutant allele used is cuc2-3 and was initially in the

Columbia (Col-0) background (Hibara et al., 2006). All marker lines were originally in the Col-0

background. PIN1::PIN1:GFP, DR5::GFP (Benková et al., 2003); LAX1::GUS, LAX2::GUS, LAX3::GUS

(Bainbridge et al., 2008); YUC1::GUS, YUC2::GUS, YUC4::GUS (Cheng et al., 2006) were described

previously. The AUX1::AUX1:YFP line corresponds to the AUX1-YFP116 construct described by

(Swarup et al., 2004). The CUC2::RFP line was kindly provided by Patrick Laufs prior to publication.

The YUC4::GFP reporter was provided by Yunde Zhao and Youfa Cheng. The YUC4 promoter

was amplified with the following primers: Y4pro3p_XmaI: cccggggtcgactaataaaagcgaaagagag and

Y4pro5p_HindIII: aagcttatgtccaacatgcatgcg. The 2916 bp PCR product was digested with HindIII

and XmaI, and cloned into pBJ36-ERGFP vector. The promoter was subcloned from pBJ36-ERGFP

into the pART27 vector and transformed into Col-0 background by floral dipping and subsequently

selecting for kanamycin resistant transgenic plants.

All images of marker construct expression in WT were obtained using the original marker lines in

the Col-0 background. The kan1kan2cuc2 mutant was generated by crossing cuc2 mutants with

kan1kan2+/- plants (kan1kan2 mutants are sterile). In the F2 of this cross, kan1kan2+/- cuc2 individu-

als were identified by screening for the kan1kan2+/- abberent fruit phenotype, and by PCR-based

screening for cuc2-3 homozygous individuals. The presence of a T-DNA insertion in the CUC2 locus

was detected by using a forward primer, which binds to the T-DNA: 5’-TCCATAACCAATCTCGA

TACAC-3’ and a reverse primer which binds within the CUC2 locus downstream of the T-DNA inser-

tion (referred to as CUC2-R): 5’- GGAGGCTAAAGAAGTACCATTC-3’. The presence of a WT copy

of CUC2 was detected using a forward primer CUC2-F: 5’-AATATCCATCCACATTATTACCAC-3’,

which binds to CUC2 upstream of the site of the T-DNA insertion in cuc2-3, along with CUC2-R.

One quarter of the offspring of kan1+/- kan2 cuc2 individuals were kan1kan2cuc2 mutants, and

could be identified at the seedling stage (and therefore selected for experiments) based on the

upwardly curled cotyledon phenotype of kan1kan2 mutants.

Marker constructs were introduced into the kan1kan2 and kan1kan2cuc2 backgrounds by carrying

out the corresponding crosses using kan1kan2+/- or kan1kan2+/-cuc2 mutants. The kan1kan2aux1-

lax1lax2lax3, kan1kan2aux1lax1lax2 and kan1kan2aux1lax1 mutants were generated by crossing

kan1kan2+/- plants with the aux1lax1lax2lax3 quadruple mutant (Bainbridge et al., 2008). In segre-

gating F2s from this cross, kan1kan2+/- plants with desired mutant alleles of aux/lax genes were

selected as described in Bainbridge et al., 2008.

The kan1kan2+/- line used to generate the kan1kan2aux1lax1lax2lax3 mutants was in the Ler-0

background, and the aux/lax quadruple mutant was in the Col-0 background. To check that the loss-

of outgrowth phenotype in hextuple mutants was not due to the introduction of an unknown genetic

element from the Col-0 background, we determined whether the reduction in the number of out-

growths segregated with the mutant LAX1 allele. An F3 family of plants was used that segregated

for mutations in KAN2 and LAX1, but was homozygous for kan1, aux1, lax2 and lax3 mutant alleles.

Of 156 kan1kan2aux1lax2lax3 plants segregating for lax1, 120 (77%) developed many outgrowths

and 36 (23%) had a reduced number and size of outgrowths. All of the plants with few outgrowths

were homozygous for the lax1 mutation, whilst all siblings with many outgrowths that were geno-

typed (40 in total) all had a wild-type copy of LAX1. Such segregation analyses were not carried out

for kan1kan2aux1lax1 and kan1kan2aux1lax1lax2 mutants thus it is possible that the reduction in
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outgrowths in these lines is due to introduction of an unknown genetic element during the cross

between Col-0 and Ler backgrounds. However, two independent families of kan1kan2aux1lax1lax2

plants (derived from different F2 plants) had similar losses of outgrowths (data provided in source

data file for Figure 11G). The loss of outgrowths in kan1kan2aux1lax1lax2lax3 plants was also

observed in two independent families quantified in two different experiments (see source data file

for Figure 11G).

Plants were sown on plates for confocal imaging experiments and to select those to be used for

crosses. Seeds were surface-sterilized before plating on Petri dishes with solid Murashige and Skoog

medium as described (Sauret-Güeto et al., 2013) and grown in controlled environment room at

20˚C in long day conditions (8 hr dark and 16 hr light under fluorescent white light at a photon flu-

ence rate of 100 mmol�m�2�s�1). When appropriate, medium was supplemented with Kanamycin 50

mg/ml (to select for PIN1::PIN1:GFP, AUX1::AUX1:YFP, LAX1::GUS, LAX2::GUS, LAX3::GUS, YUC1::

GUS and YUC4::GFP constructs).

kan1kan2 plants carrying aux/lax or cuc2 mutant alleles were sown on soil prior to characterisation

of their phenotype. Seeds were stratified directly (without sterilisation) and then sown in John Innes

Centre A.thaliana Soil Mix (Levington F2 compost with Intercept and grit at a 6:1 ratio) and were

grown under long-day conditions (16 hr light and 8 hr dark) in a glasshouse, supplemented with arti-

ficial light, at approximately 22˚C.
The kan1kan2yuc1yuc4 mutants used are as described in (Wang et al., 2011). kan1kan2+/-yuc1

+/-yuc4 LAX1::GUS plants were selected in an F2 of a cross between kan1kan2+/- yuc1+/- yuc4

plants and LAX1::GUS plants. F2 seedlings with the LAX1::GUS construct were by selected for sow-

ing seeds on plates containing 50 mg/ ml Kanamycin. Those that were kan1kan2+/- mutants were

identified based on their fruit phenotype and the presence of the yuc1+/-yuc4 genotype was

selected for by PCR-based genotyping. The yuc1 and yuc4 alleles have T-DNA insertions, and

mutant alleles were screened for using the following primers for yuc1: LBb1: 5’-GCGTGGACCGC

TTGCTGCAAC-3’ and YUC1-R: 5’-CCTGAAGCCAAGTAGGCACGTT-3’ and the following primers

for yuc4: LBb1: 5’-GCGTGGACCGCTTGCTGCAAC-3’ and YUC4-R: 5’-GCCCAACGTAGAATTAG-

CAAG-3’. WT copies of YUC1 were screened for using YUC1-F: 5’-GGTTCATGTGTTGCCAAGGGA-

3’ and YUC1-R and WT copies of YUC4 were screened for using YUC4-F 5’-CCCTTCTTAGACCTAC

TCTAC-3’ and YUC4-R. To analyse the expression of LAX1::GUS in kan1kan2yuc1yuc4 mutants, the

offspring of kan1kan2+/-yuc1+/-yuc4 LAX1::GUS or kan1kan2+/yuc1+/-yuc4 LAX1::GUS+/- plants

were sown on plates containing 50 mg/ ml Kanamycin and seedlings with a kan1kan2 leaf phenotype

(narrow, upwardly pointing leaves) were selected, genotyped for YUC1 and YUC4, and stained to

reveal GUS activity. Of these seedlings, one quarter did not have outgrowths, and genotyping

showed they were kan1kan2yuc1yuc4 mutants.

Confocal and OPT imaging, propidium iodide and GUS staining
For tracking experiments, seedlings were first grown on plates (until 5 days after stratification for

kan1kan2 and kan1kan2cuc2 mutants, and until 4 days after stratification for WT seedlings). Seven

seedlings were then transferred into a tracking chamber (Sauret-Güeto et al., 2013; Calder et al.,

2015) where they were kept for the duration of the imaging experiment. During this period, there

was a constant flow of liquid media (1/4 strength Murashige and Skoog, 0.75% sucrose, 1.1 �g / ml

MES, pH 5.8) at 1 �l /s through the growth chamber. Seedlings in the chamber were imaged using a

Zeiss EXCITER Laser Confocal Microscope every 6 to 24 hr (times are provided for specific experi-

ments in figure legends). To image GFP and YFP markers, a 488-nm line of an argon ion laser was

used. Emitted light was filtered through a 500-550-nm band-pass filter. To image RFP markers, a

543 nm helium-neon laser was used and emitted light was filtered using a 560-615-nm band-pass fil-

ter. A 40x oil objective was used for all experiments. Between imaging, the chamber containing

seedlings was kept at 20˚C, with 16 hr light, 8 hr dark cycles. In confocal imaging experiments with-

out tracking, seedlings were mounted in water on microscope slides.

Confocal z-stacks were converted into individual PNG images using Bioformats converter (http://

cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/BioformatsConverter). Z-stacks of PNG

images were then rendered in 3D using Volviewer (http://cmpdartsvr3.cmp.uea.ac.uk/wiki/Bangham-

Lab/index.php/VolViewer#Download). All snapshots shown in figures were taken from Volviewer.

Leaf widths were measured from maximum intensity projections in image J and thus do not take into

account the 3D curvature of the leaf.
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OPT imaging was performed as described by (Lee et al., 2006, Sharpe et al., 2002). Following

PI staining (described below), plants were embedded in 1% low melting point agarose and embed-

ded samples were kept in methanol overnight to dehydrate. To clear the agarose before scanning,

the methanol was replaced with 2 parts (v/v) Benzyl Benzoate, 1 part Benzyl Alcohol and samples

were left for 12 hr until almost transparent. A prototype OPT device was used to image embedded

leaves (Lee et al., 2006; Sharpe et al., 2002). A 20-W halogen lamp connected to the OPT device

was used to collect visible light transmission images. Images were reconstructed into png slices and

visualised in 3D using VolViewer.

For propidium iodide staining, dissected leaves were placed into 10% (v/v) acetic acid, 50% (v/v)

methanol solution and kept at 4˚C overnight. Samples were then washed with water and dehydrated

with two washes each in 40% (v/v) ethanol, 60% (v/v) ethanol and then 80% (v/v) ethanol. The sam-

ples were boiled in 80% (v/v) ethanol at 80˚C for 2–10 min in a water bath and then rehydrated with

two washes each in 60% (v/v) ethanol, 40% (v/v) ethanol, 20% (v/v) ethanol, and water. Samples were

then treated with alfa-amylase [3 mg of alpha-amylase (SIGMA, UK) in 10 ml of 20 mM phosphate

buffer (pH 7), 2 mM NaCl, 0.25 mM Ca2Cl] overnight at 37˚C, followed by three water washes, and

then treated with 1% periodic acid [1% in solution from SIGMA, UK] (an oxidising agent) for 40 min

at room temperature. Following two washes with water, PI staining solution [333 mM sodium meta-

bisulphite, 0.5 M HCl, 148 �M PI] was added and incubated for 1–2 hr at room temperature until the

material appeared pink in colour. PI staining solution was then removed and the samples were

washed with water.

GUS staining with and without wax embedding was performed as described by Sessions et al.

(1999), but here using 6 mM Potassium Ferrocyanide and 6 mM Potassium Ferricyanide and with an

18 hr incubation with the GUS staining solution.

Protein in situ localisation of PIN1
Immuno-localisation of PIN1 was performed as described (Conti and Bradley, 2007), using a goat

anti-PIN1 (aP-20) polyclonal primary antibody (Santa Cruz Biotechnology, TX, USA) (RRID:AB_

670528) diluted 1:300 and a Cy3 conjugated rabbit anti-goat secondary antibody (Jackson

Immunoresearch, PA, USA), diluted 1 in 300.

Model descriptions
All models were created using the VVe modelling environment, an extension of the VV system

(Smith et al., 2003), which in turn is an extension of L-systems. All models are provided as supple-

mentary source code files. Each model can be run using L-studio with VVe, which can be down-

loaded from http://algorithmicbotany.org/virtual_laboratory/. Instructions on how to run models are

available as supplementary information (Supplementary file 1).

Indirect coupling
The indirect coupling model was implemented based on the description in Abley et al., 2013

except in some simulations we use rectangular rather than hexagonal cell geometries and we intro-

duce an explicit representation of PIN1 to all models. The details of these differences are described

below. All parameter values are as described in Abley et al., 2013, unless otherwise detailed in

Table 1.

Each rectangular cell is represented by a single central cytoplasmic compartment, 22 membrane

compartments (6 membrane compartments for each long edge and 5 membrane compartments for

each short edge), and surrounding cell wall compartments. Each cell wall compartment links two

membrane compartments located in adjacent cells.

The system is initialised with a default concentration of PIN1 in the cytoplasmic compartment of

all cells. The rate of change of PIN1 concentration in a given membrane compartment depends on a

background binding rate of PIN1 from the cytoplasm to the membrane, plus default unbinding from

the membrane into the cytoplasm. It is also assumed that A* in a given membrane compartment

promotes the binding of PIN1 to that membrane compartment and that PIN1 can diffuse between

adjacent membrane compartments of the same cell. The equation describing the rate of change of

PIN1 concentration in a given membrane compartment is:
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qPIN

qt
¼ �PIN þ tA�ð ÞPINc��PINPINþDPINr2PIN (1)

where PIN is the concentration of PIN1 in the focal membrane compartment, with units of Arbitrary

units (Au)/ mm and PINC is the concentration of PIN1 in the cytoplasmic compartment of the same

cell as the focal membrane compartment, with units of Au/mm
2. �PIN is the default binding rate of

PIN1 to the membrane, with units of mm/s, and t is a constant describing the rate at which mem-

brane-bound A* promotes the binding of PIN1 to the membrane, with units of mm2/Au.s. A* is the

concentration of the A* polarity component in the focal membrane compartment, with units of Au/

mm. mPIN is the default unbinding rate of PIN1 from the membrane into the adjacent cytoplasmic

compartment, with units of /s. DPIN is the diffusion constant of PIN1 in the membrane, with units of

mm2/s.

The corresponding equation describing the rate of change of PIN1 concentration for a given cyto-

plasmic compartment is:

Table 1. Parameter values used in simulations of the indirect coupling model.

Symbol description unit value

Dt numerical time step s (seconds) 0.05

Rc area of cytoplasmic compartment mm2 260

Rw area of cell wall compartment mm2 2.88 (for long
cell edges); 3.0 (for short cell edges)

ln length of membrane compartments mm 2.88; 3.0

lw length of wall compartments mm 2.88; 3.0

cPIN default initial concentrations of PIN1 in cytoplasmic compartments Au/ mm
2 0.003

�PIN PIN1 default membrane binding rate mm/s 0.03

t A*-dependent promotion of PIN1 binding mm2/Au.s 2

mPIN PIN1 default membrane unbinding rate /s 0.004

DPIN PIN1 diffusion in cell membrane mm2/s 0.1

	PIN PIN-dependent active auxin efflux rate mm2/Au.s 40

" limit for noise addition during initialisation of A* and B* concentrations dimensionless 0.0166

gAux Auxin-dependent promotion of A* to A conversion mm2/Au.s 0.75*

�Aux production rate of Auxin Au/mm
2.s 1.0 � 10�4*

mAux degradation rate of Auxin /s 0.01*

vin influx auxin permeability mm/s 0.75*

All parameters relate to either equations specified here or in Abley et al., 2013.

* In the simulations used to generate Figure 7C and Figure 7—figure supplement 1C, gAux = 0.9 mm2/Au.s, �Aux = 1.3 � 10�4 Au/mm
2.s and mAux =

0.02/s. Also, in some simulations, at tissue boundaries or centres of polarity convergence, auxin production, degradation and influx auxin permeability

rates may vary from the background rates. Modulation of the influx auxin permeability rate is used to simulate elevated rates of auxin import. In

Figure 9C, the auxin production rate in the bottom-most row of cells = 2 � 10�4 Au/mm
2.s, and the auxin degradation rate in the top most row of cells

= 0.07/s. In Figure 9D, and at the beginning of the simulation used to generate Figure 10C and D the auxin production rate in the bottom-most row

of cells = 2 � 10�4Au/mm
2.s. Throughout both simulations, in the top-most row, the auxin degradation rate = 0.015/s and the auxin influx permeability

= 4.5 mm/s. In the simulation used to generate Figure 10C and D, changes in auxin production occur during the simulation and are described below. In

this simulation, in the cell that forms the centre of convergence, the inwards permeation of auxin = 37.5 mm/s and the auxin degradation rate = 0.15/s.

In Figure 16C and D, the proximo-distal polarity field is established as described for Figure 9D. In the three cells with elevated auxin production, the

auxin production rate is 1.4 � 10�3Au/mm
2.s. In the cell with elevated auxin import and removal (Figure 16D), the auxin degradation rate = 0.1 /s and

the auxin influx permeability = 37.5 mm/s. In the simulations used to generate Figure 10—figure supplement 1A and B, parameter values are as for

Figures 9D and 10D, respectively except 	PIN = 80 mm2/Au.s and gAux = 0.85 mm2/Au.s. Here, c, the concentration of A* at which half of the PINs are

activated = 0.22 Au/mm and the hill coefficient, h = 2.

DOI: 10.7554/eLife.18165.026
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http://dx.doi.org/10.7554/eLife.18165.026Table%201.Parameter%20values%20used%20in%20simulations%20of%20the%20indirect%20coupling%20model.%2010.7554/eLife.18165.026Symboldescriptionunitvalue&x0394;tnumerical%20time%20steps%20(seconds)0.05Rcarea%20of%20cytoplasmic%20compartment&x00B5;m2260Rwarea%20of%20cell%20wall%20compartment&x00B5;m22.88%20(for%20long%20cell%20edges);%203.0%20(for%20short%20cell%20edges)lnlength%20of%20membrane%20compartments&x00B5;m2.88;%203.0lwlength%20of%20wall%20compartments&x00B5;m2.88;%203.0cPINdefault%20initial%20concentrations%20of%20PIN1%20in%20cytoplasmic%20compartmentsAu/%20&x00B5;m20.003&x03C1;PINPIN1%20default%20membrane%20binding%20rate&x00B5;m/s0.03&x03C4;A&x002A;-dependent%20promotion%20of%20PIN1%20binding&x00B5;m2/Au.s2&x00B5;PINPIN1%20default%20membrane%20unbinding%20rate/s0.004DPINPIN1%20diffusion%20in%20cell%20membrane&x00B5;m2/s0.1&x03A8;PINPIN-dependent%20active%20auxin%20efflux%20rate&x00B5;m2/Au.s40&x025B;limit%20for%20noise%20addition%20during%20initialisation%20of%20A&x002A;%20and%20B&x002A;%20concentrationsdimensionless0.0166&x03B3;AuxAuxin-dependent%20promotion%20of%20A&x002A;%20to%20A%20conversion&x00B5;m2/Au.s0.75&x002A;&x03C1;Auxproduction%20rate%20of%20AuxinAu/&x00B5;m2.s1.0%20&x00D7;&x00A0;10&x2212;4&x002A;&x00B5;Auxdegradation%20rate%20of%20Auxin/s0.01&x002A;vininflux%20auxin%20permeability&x00B5;m/s0.75&x002A;All%20parameters%20relate%20to%20either%20equations%20specified%20here%20or%20in%20Abley%20et�al.,%202013.&x002A;%20In%20the%20simulations%20used%20to%20generate%20Figure%207C%20and%20Figure%207&x2014;figure%20supplement%201C,%20&x03B3;Aux%20=&x00A0;0.9%20&x00B5;m2/Au.s,%20&x03C1;Aux%20=&x00A0;1.3%20&x00D7;&x00A0;10&x2212;4%20Au/&x00B5;m2.s%20and%20&x00B5;Aux%20=%200.02/s.%20Also,%20in%20some%20simulations,%20at%20tissue%20boundaries%20or%20centres%20of%20polarity%20convergence,%20auxin%20production,%20degradation%20and%20influx%20auxin%20permeability%20rates%20may%20vary%20from%20the%20background%20rates.%20Modulation%20of%20the%20influx%20auxin%20permeability%20rate%20is%20used%20to%20simulate%20elevated%20rates%20of%20auxin%20import.%20In%20Figure%209C,%20the%20auxin%20production%20rate%20in%20the%20bottom-most%20row%20of%20cells%20=%202%20&x00D7;&x00A0;10&x2212;4%20Au/&x00B5;m2.s,%20and%20the%20auxin%20degradation%20rate%20in%20the%20top%20most%20row%20of%20cells%20=%200.07/s.%20In%20Figure%209D,%20and%20at%20the%20beginning%20of%20the%20simulation%20used%20to%20generate%20Figure%2010C%20and%20D%20the%20auxin%20production%20rate%20in%20the%20bottom-most%20row%20of%20cells%20=%202%20&x00D7;&x00A0;10&x2212;4Au/&x00B5;m2.s.%20Throughout%20both%20simulations,%20in%20the%20top-most%20row,%20the%20auxin%20degradation%20rate%20=%200.015/s%20and%20the%20auxin%20influx%20permeability%20=%204.5%20&x00B5;m/s.%20In%20the%20simulation%20used%20to%20generate%20Figure%2010C%20and%20D,%20changes%20in%20auxin%20production%20occur%20during%20the%20simulation%20and%20are%20described%20below.%20In%20this%20simulation,%20in%20the%20cell%20that%20forms%20the%20centre%20of%20convergence,%20the%20inwards%20permeation%20of%20auxin%20=%2037.5%20&x00B5;m/s%20and%20the%20auxin%20degradation%20rate%20=&x00A0;0.15/s.%20In%20Figure%2016C%20and%20D,%20the%20proximo-distal%20polarity%20field%20is%20established%20as%20described%20for%20Figure%209D.%20In%20the%20three%20cells%20with%20elevated%20auxin%20production,%20the%20auxin%20production%20rate%20is%201.4%20&x00D7;&x00A0;10&x2212;3Au/&x00B5;m2.s.%20In%20the%20cell%20with%20elevated%20auxin%20import%20and%20removal%20(Figure%2016D),%20the%20auxin%20degradation%20rate%20=%200.1%20/s%20and%20the%20auxin%20influx%20permeability%20=%2037.5%20&x00B5;m/s.%20In%20the%20simulations%20used%20to%20generate%20Figure%2010&x2014;figure%20supplement%201A%20and%20B,%20parameter%20values%20are%20as%20for%20Figures%209D%20and%2010D,%20respectively%20except%20&x03A8;PIN%20=&x00A0;80%20&x00B5;m2/Au.s%20and%20&x03B3;Aux%20=%200.85%20&x00B5;m2/Au.s.%20Here,%20c,%20the%20concentration%20of%20A&x002A;%20at%20which%20half%20of%20the%20PINs%20are%20activated%20=&x00A0;0.22%20Au/&x00B5;m%20and%20the%20hill%20coefficient,%20h%20=&x00A0;2.
http://dx.doi.org/10.7554/eLife.18165


qPINc

qt
¼�1

Rc

X

n2N cð Þ
ln �PIN þ tA�

n

� �

PINc ��PINPINn

� �

(2)

Where PINC is the concentration of PIN1 in the focal cytoplasmic compartment and PINn is the con-

centration of PIN1 in the membrane compartment n, in the neighbourhood of the cell c (N(c)). Rc is

the area of the cytoplasmic compartment and ln is the length of the nth membrane compartment.

A*
n is the concentration of A* in the membrane compartment n. �PIN, t and mPIN are as described

above for Equation 1.

The export of auxin from a cytoplasmic compartment to a wall compartment depends on the con-

centration of PIN1 in the intervening membrane compartment. The equation presented by

Abley et al., 2013, describing the rate of change of auxin (referred to as mediator (M) in

Abley et al., 2013), in cytoplasmic compartment i becomes:

dAuxi

dt
¼ �Aux��AuxAuxiþ

1

Rc

lw
X

n2N cð Þ
vinAuxw � voutAuxi� PINPINnAuxið Þ (3)

Where Auxi is the concentration of auxin in the cytoplasmic compartment i, Auxw is the concentra-

tion of auxin in the wall compartment neighbouring the membrane compartment n in the neighbour-

hood of the cell c (N(c)), �Aux is the production rate of auxin with units of Au/mm
2.s, Rc is the area of

the cytoplasmic compartment, and mAux is the degradation rate of auxin with units of /s. PINn is the

concentration of PIN1 in the nth membrane compartment of the cell. nin is the background

Table 2. Parameter values used in simulations of the flux-based model.

Symbol description unit value

Dt numerical time step s (seconds) 0.01

R area of cytoplasmic compartment mm2 260

l length of cell edge compartment mm 15 for short cells edges;
8.6 for the each of the two compartments of a long
edge *

CA default initial concentration of auxin in cytoplasmic compartments Au/ mm
2 0.01

CPIN default initial concentration of PIN1 at cell edge compartments Au /mm 0.01†

"PIN limit for noise addition during initialisation of PIN1 concentrations at cell
edges

dimensionless 0.025**

"Aux limit for noise addition during initialisation of Auxin concentrations dimensionless 0.025‡

T PIN-dependent active auxin efflux rate mm2/Au.s 1

g Unbinding rate of PIN1 from the cell edge /s 0.1

� production rate of Auxin Au/mm
2.s 0.0001§

m degradation rate of Auxin /s 0.02

a Flux-dependent promotion of PIN1 allocation to a cell edge dimensionless 1#

D Passive permeation rate of auxin mm/s 5

Pmax Maximum concentration of PIN1 at a cell edge Au /mm 0.01¶

I Auxin import rate mm / s 0

* For cells with hexagonal geometries, each cell edge has a length of 10 mm.
† Value given is that used in simulations used to generate Figure 7.B and Figure 7—figure supplement 1B. In all other simulations, CPIN = 0.

‡ Values apply to simulations used to generate Figure 7B ("PIN) and Figure 7—figure supplement 1B, and Figure 7E ("Aux). All other simulations are

initialised without noise addition.
§ The value given for the auxin production rate applies to simulations used to generate Figures 9A,B, 10A, B and 16A,B. In the simulation used to gen-

erate Figure 7B and Figure 7—figure supplement 1B, � = 0.0025 Au/mm
2.s and in the simulation used to generate Figure 7E, � = 0.002 Au/mm

2.s.
# The value given for, a, the flux-dependent promotion of PIN allocation to cell edges, applies to simulations used to generate Figures 9A,B, 10A,

B and 16A,B. In the simulation used to generate Figure 7B, a = 4 � 10�3 and in the simulation used to generate Figure 7E, a = 3.2 � 10�3.
¶ In the simulation used to generate Figures 7B, Figure 7—figure supplement 1B and 7E, Pmax = 0.04Au /mm.

DOI: 10.7554/eLife.18165.027
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permeation rate of auxin into the cytoplasm from the wall with units of mm/s and nout is the back-

ground permeation rate of auxin into the wall from the cytoplasm with units of mm/s. lw is the length

of the cell wall compartment into/out of which auxin flux is occurring and Rc is the area of the cyto-

plasmic compartment.  PIN is the rate of PIN1-dependent active efflux of auxin from the cytoplasm

into the wall with units of mm2/ Au.s.

The equation describing the rate of change of auxin in wall compartments becomes:

qAuxw

dt
¼� 1

Rw

lw
X

n2N wð Þ
vinAuxw� voutAuxc � PINPINnAuxcð ÞþDAuxr2Auxw (4)

where Rw is the area of the wall compartment, lw is the length of the wall compartment, Auxw is the

concentration of auxin in the wall compartment, An* is the concentration of A* in the membrane

compartment n in the neighbourhood of the given wall compartment w (N(w)) and Auxc is the con-

centration of auxin in the cytoplasm of the same cell as the membrane compartment n.  PIN is as

described above and PINn is the concentration of PIN1 in the membrane neighbor, n, in the neigh-

bourhood of the wall compartment w ((N(w)). DAux is the diffusion constant for auxin within the cell

wall with units of mm2/s (this constant relates to lateral diffusion between wall compartments as it is

assumed that the concentration of auxin is uniform across the thickness of the wall).

In the simulation used to generate Figure 10—figure supplement 1, we introduce D6 kinase-like

activity into the model by assuming that only a fraction of PINs are active and able to export auxin,

and that this fraction depends on the local concentration of A* in the membrane. A* therefore repre-

sents D6 kinase-like activity. In this scenario, the term describing PIN1-mediated auxin efflux from

the cell to the wall in Equations 3 and 4 is modified to become:

A�
n
h

A�
n
h þ ch

	PINPINnAuxc (5)

Where A*n is the concentration of A* in the same membrane compartment as PIN, h is the Hill coeffi-

cient (here a value of 2 was used, giving a sigmoidal function), and c is the concentration of A* at

which half of the PINs are activated.  PIN, PINn and Auxc are as described above.

In all simulations of the indirect coupling model, there is no flux of auxin across the boundaries of

the tissue.

In the simulation used to generate Figure 10C and D (positioning of cells with elevated auxin

import and removal), in the first 6500 s of the simulation, the production rate of auxin, rAux, in all

cells in the proximal half of the array (except those in the proximal-most row) is 1.5 � 10�4 Au/ mm
2.s

(in the proximal most row �Aux = 2 � 10�4Au/mm
2.s). Then, between 6500 and 10 000 s of the simula-

tion, the auxin production rate of all cells in the proximal half of the array (including those in the

proximal-most file) is increased at every time step of the simulation:

d�Aux

dt
¼ b (6)

Where rAux is the auxin production rate of a given cell and b is a constant describing the rate of

increase of the auxin production rate, with units of Au/ mm
2.s2 (b = 5 � 10�6 Au/ mm

2.s2). As a conse-

quence of this increase in the auxin production rate, after 10 000 s of the simulation, in the proxi-

mal-most file of cells, rAux = 3.75 � 10�4 Au/ mm
2.s, and in the other cells in the proximal-most half

of the leaf, rAux = 3.25 � 10�4 Au/ mm
2.s.

After 6 500 s of the simulation, if the auxin concentration of a cell exceeds a threshold, Timport,

the inwards permeability of the cell to auxin is increased 50-fold (vin = 37.5 mm /s) and the auxin deg-

radation of the cell is increased 10-fold so that mAux = 0.1 /s. Timport = 0.0285 Au/ mm
2.

In the simulation used to generate Figure 10C and D, a noise term is added to the concentra-

tions of auxin every 0.05 s of the simulation, according to the following equation:

Auxn ¼ Auxþ �Aux �
ffiffiffi

A
p

ux

� �

(7)

where Auxn is the concentration of auxin in a given cytoplasmic compartment after the addition of

noise with units of Au/mm
2, Aux is the concentration of auxin in that compartment before the addi-

tion of noise (with the same units), qAux is a random number drawn from a normal distribution, with
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mean 0, and standard deviation 5 � 10�4. Noise is added to the concentration of auxin in proportion

to the square root of the auxin concentration.

Flux based model
The flux-based model was implemented using a similar discretisation of cells as in previous imple-

mentations (Rolland-Lagan and Prusinkiewicz, 2005; Stoma et al., 2008). Each cell is represented

by a single central cytoplasmic compartment surrounded by six peripheral compartments represent-

ing cell edges (one for each cell-cell interface). There is no representation of the cell wall. Each edge

compartment of a cell is connected to the cytoplasmic compartment of the same cell and to the jux-

taposed edge compartment of the neighbouring cell, unless the vertex is at a border of the tissue.

The model is implemented based on previously described implementations (Rolland-

Lagan and Prusinkiewicz, 2005; Stoma et al., 2008). At the beginning of all simulations, the system

is initialised with auxin in cytoplasmic compartments and PIN1 at edge compartments.

The system may be initialised with noisy auxin concentrations in each cytoplasmic compartment, i:

Auxi t¼ 0ð Þ ¼ cA 1þ �Auxð Þ (8a)

�Aux 2 �"Aux; "Aux½ � (8b)

where Auxi(t = 0) is the initial concentration of auxin in a given cytoplasmic compartment, i, with

units of Au/ mm
2 and cA is the default initial concentration of auxin at an edge compartment. �Aux is a

random number uniformly distributed between an upper and lower limit, "Aux.

The system may also be initialised with noisy PIN1 concentrations at each cell edge:

PINedge t¼ 0ð Þ ¼ cPINedge 1þ �PINð Þ (9a)

�PIN 2 �"PIN ; "PIN½ � (9b)

where PINedge(t = 0) is the initial concentration of PIN1 at a given edge compartment, with units of

Au/ mm and cPINedge is the default initial concentration of PIN1 at an edge compartment. �PIN is a ran-

dom number uniformly distributed between an upper and lower limit, "PIN.

PIN1 is recruited to a cell edge depending on the rate of auxin efflux across that edge, and PIN1

is removed from the edge at a background rate. The equation describing the rate of change of PIN1

concentration for a given cell edge, between cells i and j, is

dPINij

dt
¼

afi!j�gPINij iffi!j � 0

�gPINij iffi!j<0

(

(10)

Where PINij is the concentration of PIN1 in cell i, at the cell edge between cells i and j, a is a dimen-

sionless constant determining the extent to which flux promotes PIN1 allocation to the membrane

and Fi!j is the auxin flux across the interface between cells i and j, with units of Au / mm.s. Outgoing

fluxes, from cell i, to cell j are considered to be positive, and incoming fluxes are considered to be

negative. g is the unbinding rate of PIN1 from the cell edge, with units of /s.

As previously described (Rolland-Lagan and Prusinkiewicz, 2005), we assume that once the con-

centration of PIN1 at the cell edge reaches a threshold value, Pmax, PIN1 can no-longer be allocated

to the edge. This is equivalent to assuming that there is a maximum density of PIN1 proteins which

may be present in the plasma membrane.

In all versions of the model, the flux across a given cell edge, from cell i to cell j, at a given time

point depends on passive permeability of auxin between cells and PIN-mediated auxin export. In the

simulations used to generate Figures 9B, 10A,B and 16A,B, we assume that auxin may also be

actively imported into cells, and that the rate of import depends on the auxin import rate of a given

cell, and the auxin concentration in its neighbour. The flux across a given cell edge, from cell i to cell

j, at a given time point is therefore given by

Fi!j ¼D Ai �Aj

� �

þT PINijAi�PINjiAj

� �

þ IjAi� IiAj (11)

Where Fi!j is the flux across a given cell-cell interface, from cell i to cell j, D is a constant describing

Abley et al. eLife 2016;5:e18165. DOI: 10.7554/eLife.18165 36 of 43

Research article Developmental Biology and Stem Cells Plant Biology

http://dx.doi.org/10.7554/eLife.18165


the passive permeation rate of auxin, with units of mm / s, Ai is the concentration of auxin in cell i, Aj

is the concentration of auxin in cell j, PINij is the concentration of PIN1 in cell i, at the cell edge

between cells i and j, and PINji is the concentration of PIN1 in cell j, at the cell edge between cell j

and i. T is a constant describing the rate of PIN-mediated auxin transport, with units of mm2/ Au.s. Ij
and Ii are parameters describing the auxin import rates of cells j and i respectively, with units of mm /

s.

The rate of change of auxin concentration in the cytoplasm of a given cell, i, depends on the pro-

duction and degradation rates of auxin, and its flux into adjacent cells and is given by:

dAi

dt
¼ ���Ai �

1

Ri

X

ij2N ið Þ
Fi!j

� �

lij (12)

Where � is the production rate of auxin, with units of Au / mm2.s, m is the degradation rate of auxin,

with units of /s, Ai is the concentration of auxin in the cytoplasm of cell i and Ri is the area of the cell

i. Fi!j is the flux of auxin across the interface between cells i and j, in the neighbourhood of the cell i

((N(i)) and lij is the length of the cell edge at the interface between cells i and j.

In the simulations used to generate Figure 7B,E and Figure 7—figure supplement 1B, there is

no flux of auxin across the boundaries of the tissue. To minimise boundary effects, in the simulations

used to generate Figures 9A,B, 10A,B and 16A,B, the left and right boundaries of the tissue are

connected so auxin flux can occur between them. All changes in concentrations were solved numeri-

cally using an explicit Euler integration method.

In all simulations where the row of cells at the base of the tissue has an elevated rate of auxin pro-

duction (orange cells at the base in Figures 9A,B, 10A,B and 16 A,B), the auxin production rate in

these cells = 0.0008 Au /mm2.s. In Figure 16A,B, in the band of three cells with elevated auxin pro-

duction, the auxin production rate = 0.032 Au /mm2.s. In the simulation used to generate Figure 9A,

in the distal row of cells, the auxin degradation rate = 0.5/s. In the simulations used to generate

Figures 9B, 10A,B and 16 A, B, in the distal most row of cells with elevated auxin import and

removal, I = 300 mm / s and � = 0.04/s. In the simulation used to generate Figure 10B, in the

induced cells with elevated auxin import and removal, I = 30 mm / s and � = 0.5 /s. In the simulation

used to generate Figure 16B, I = 100 mm / s and � = 0.8 /s in the single cell with elevated auxin

import and removal.

In the simulation used to generate Figure 10A and B (positioning of cells with elevated auxin

import and removal), in the first 165 s of the simulation, the production rate of auxin, rAux, in the

proximal-most file of cells, = 0.0008 Au/ mm2.s. In this first phase of the simulation, the production

rate of auxin in all other cells in the proximal half of the array is 0.0005Au/ mm
2.s. Then, between 165

and 200 s of the simulation, the auxin production rate of all cells in the proximal half of the array

(including those in the proximal-most file) is increased at every time step of the simulation according

to Equation 6. Here, b = 0.0001 Au/ mm
2.s2. As a consequence of this increase in the auxin produc-

tion rate, after 200 s of the simulation, in the proximal-most file of cells, r = 0.0043 Au/ mm
2.s, and in

the other cells in the proximal-most half of the leaf, r = 0.004 Au/ mm
2.s.

After 165 s of the simulation, if the auxin concentration of a cell exceeds a threshold, Timport, the

auxin import of the cell is increased so that I = 30 mm / s and the auxin degradation rate is increased

so that � = 0.5 /s. Timport = 0.09 Au/ mm2 .

After 20 s of the simulation, noise is added to the concentrations of auxin every 0.01 s of the sim-

ulation, according to Equation 7. In this case, qAux is a random number drawn from a normal distri-

bution, with mean 0, and standard deviation 5 � 10�3.

Up-the-gradient model
The up-the-gradient model is implemented based on the description by Bilsborough et al., 2011.

The tissue is represented as described for the flux-based model. The system is initialised with auxin

in cytoplasmic compartments and PIN1 at edge compartments. In some simulations, the system is

initialised with noisy PIN1 concentrations at each cell edge, as described by Equations 9a,b, or noisy

auxin concentrations in each cell, as described by Equations 8a,b.

PIN1 only exists in cell edge compartments and each cell has a fixed total concentration of PIN1

available to its cell edges. This total concentration of PIN1 is distributed between edge compart-

ments at each time step according to an exponential function of the auxin concentrations in
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neighbouring cells. The equation describing the concentration of PIN1 in a given edge compartment

in cell i, at the interface between cell i and j, at a given time step is:

PINij ¼ PINi

bAj

P

k b
Ak

(13)

Where PINij is the concentration of PIN1 at the cell edge between cells i and j, in cell i. PINi is the

total PIN1 concentration available to be divided between all the edges of cell i (with units of Au/

mm), Aj is the concentration of auxin in the neighbour j and Ak is the auxin concentration in the

neighbour k of cell i. The exponentiation base, b, controls the extent to which the auxin distribution

in neighbouring cells influences PIN1 protein distribution at cell edges.

Previous simulations have differed in the implementation of auxin production. Some assume that

intracellular auxin feeds back to inhibit its own production (Smith et al., 2006; Bayer et al., 2009;

Bilsborough et al., 2011; Feugier et al., 2005), whilst other assume that auxin production occurs

independently of intracellular auxin concentration (Rolland-Lagan and Prusinkiewicz, 2005;

Jonsson et al., 2006; Stoma et al., 2008). We use the latter assumption in all models.

The rate of change of auxin concentration for a given cytoplasmic compartment depends on the

rates of auxin production and degradation, and the rates of auxin flux between the given cell and its

neighbours. This is described by the following equation:

dAi

dt
¼ ���Ai �

1

Ri

X

ij2N ið Þ
Fi!j

� �

lij (14)

Where Ai is the auxin concentration of cell i, � is the auxin production rate, with units of Au /mm2.s, m

is the auxin degradation rate, with units of / s and Ri is the area of the cell i, with units of mm2. Fi!j is

the auxin flux (with units of Au / mm.s) out of cell i, across the interface between cells i and j, in the

neighbourhood of cell i ((N(i)). lij is the length of the cell edge at the interface between cells i and j,

with units of mm.

The flux of auxin between neighbouring cells is calculated as described by Equation 11. Changes

in auxin concentrations were solved numerically using an explicit Euler integration method.

As for the flux-based model, in the simulations used to generate Figure 7A and D and Figure 7—

figure supplement 1A, there is no flux of auxin across the boundaries of the tissue. To minimise

boundary effects, in the simulations used to generate Figures 8A,B, 11H, 14D and 16 E,F, the left

and right boundaries of the tissue are connected so auxin flux can occur between them.

In simulations used to generate Figure 8A,B and Figure 16E,F, where the distal-most row of cells

has an elevated initial auxin concentration (row of orange cells in Figures 8A,B), the initial auxin con-

centration in these cells is 0.5 Au /mm2. In all simulations where the proximal-most row of cells has a

low initial auxin concentration and an elevated rate of auxin degradation (blue cells in bottom row in

Figures 8A,B, 11H, 16E,F), the initial auxin concentration in these cells is 0 Au /mm2 and their auxin

degradation rate = 0.05/s.

In the simulation used to generate Figure 14D, the initial auxin concentration in the distal-most

row of cells = 0.5 Au /mm2, whilst in all other cells, the initial auxin concentration is as stated in

Table 3. In the distal most row of cells, the rates of auxin import and degradation are elevated (I =

20 mm / s and m = 0.01 /s). In the proximal most file of cells, the auxin production rate is elevated so

that � = 0.001 Au /mm
2.s

In the simulation used to generate Figure 11H, in the distal most row of cells, auxin import and

degradation are elevated, as described for Figure 14D. When the auxin concentration exceeds a

threshold, Timport, in cells other than those at the proximal and distal boundaries, the rates of auxin

import and degradation are increased to be equal to those in the distal most row of cells (I = 20 mm

/ s and m = 0.01 /s). Timport = 0.08 Au /mm
2.

In Figure 16E,F, in the band of three cells with elevated auxin production the auxin production

rate = 0.04 Au /mm
2.s. In Figure 16F, in the cell with elevated auxin import and removal, I = 5 mm / s

and m = 0.03 /s.
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Table 3. Parameter values used in up-the-gradient simulations.

Symbol description unit value

Dt numerical time step s (seconds) 0.01

R area of cytoplasmic compartment mm2 260

l length of cell edge compartment mm 15 for short cells edges;
8.6 for the each of the two compartments of a long
edge *

CA default initial concentration of auxin in cytoplasmic compartments Au/ mm
2 0.01 (Figure 7A,D, Figure 7—figure supplment 1A.)

0.005 (other Figs.)

CPIN default initial concentration of PIN1 at cell edge compartments Au /mm 0.1†

"PIN limit for noise addition during initialisation of PIN1 concentrations at cell
edges

dimensionless 0.025†

"Aux limit for noise addition during initialisation of Auxin concentrations dimensionless 0.025†

T PIN-dependent active auxin efflux rate mm2/Au.s 80

� production rate of Auxin Au /mm2.s 0.0003‡

m degradation rate of Auxin /s 0.005

PINi Total amount of PIN1 in a cell available for binding to edge
compartments

Au /mm 0.1

D Passive permeation rate of auxin mm/s 10

b Exponentiation base for PIN1 allocation to the membrane dimensionless 6

I Auxin import rate mm / s 0

* For cells with hexagonal geometries, each cell edge has a length of 10 mm.
† Values given for the initial concentration of PIN1 at cell edge compartments, and the limit for noise addition to this concentration, are those used in

simulations used to generate Figure 7A and Figure 7—figure supplement 1A. In all other simulations, CPIN and "PIN = 0. The value given for "Aux

applies only to Figure 7D, in all other simulations, "Aux = 0.
‡ Value given for the production rate of auxin applies to the simulations used to generate Figures 7D, 8A, B, 11H, 14D and 16E,F. In the simulation

used to generate Figure 7A and Figure 7—figure supplement 1A, � = 0.0025 Au /mm
2.s.
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