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Differential growth is the driver of tissue morphogenesis in plants, and also

plays a fundamental role in animal development. Although the contri-

butions of growth to shape change have been captured through modelling

tissue sheets or isotropic volumes, a framework for modelling both isotropic

and anisotropic volumetric growth in three dimensions over large changes in

size and shape has been lacking. Here, we describe an approach based on

finite-element modelling of continuous volumetric structures, and apply it

to a range of forms and growth patterns, providing mathematical validation

for examples that admit analytic solution. We show that a major difference

between sheet and bulk tissues is that the growth of bulk tissue is more con-

strained, reducing the possibility of tissue conflict resolution through

deformations such as buckling. Tissue sheets or cylinders may be generated

from bulk shapes through anisotropic specified growth, oriented by a

polarity field. A second polarity field, orthogonal to the first, allows sheets

with varying lengths and widths to be generated, as illustrated by the

wide range of leaf shapes observed in nature. The framework we describe

thus provides a key tool for developing hypotheses for plant morphogenesis

and is also applicable to other tissues that deform through differential

growth or contraction.
1. Introduction
Various approaches have been taken to mathematically model plant tissue

growth and morphogenesis in order to develop and clarify hypotheses for

tissue behaviours [1–3]. Biologically, plant tissue is an interconnected mesh

of cell walls, whose growth is driven by turgor pressure, with new walls arising

by cell division as the tissue grows. One approach is to model the walls and

interiors of cells explicitly. Such models allow cellular-level predictions to be

made and validated. This method has been used to model the growth of mer-

istem primordia, embryos, roots, shoot apices, fern gametophytes, sepals and

leaves [4–17].

Another approach, and the one adopted in this paper, is to abstract from

cells, by modelling tissue as a continuous material, either as a surface with

no thickness or as a sheet of finite thickness. The advantage of the continuum

approach is its simplicity, particularly when dealing with three-dimensional

deformations and anisotropic growth. The method has been used to simulate

growth and morphogenesis of various tissue sheets, including shoot apices,

leaves, sepals, petals and fruits [2,4,18–27], as well as animal tissue sheets

such as hearts and facial cartilage [23,28].

Modelling software that we have developed [18] was specialized for sheet-

like tissues (those that are everywhere thin in one direction, but may be curved

in space). Here, we extend the method and software to volumetric growth of

bulk tissues. Sheet-like tissues can then be modelled as an outcome of patterns

of growth from an initial non-sheet-like primordium, rather than being an

assumed initial state.

When tissue is modelled as a continuum, it is assumed that for each region

of the tissue, there is a specified rate of growth that defines how much that
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region would grow in mechanical isolation from neighbour-

ing tissue [18]. This rate of ‘specified’ growth is a tensor

quantity, representing the possibility that the growth may

be by different amounts in different directions. The problem

is then to compute the deformation field, or resultant

growth (i.e. a mapping of each region of the tissue to its

new position), that will result from applying the field of

specified growth rate for all regions when mechanically con-

nected together, over some small time interval. In general,

there will be no deformation field in which every region of

the tissue achieves its specified growth. For example, a disc-

shaped tissue growing faster at its edge than at its centre

may be forced to buckle out of the plane, introducing a defor-

mation (curvature or rotation) which was not specified by the

growth field. The actual deformation resulting from the field

of specified growth is taken to be whatever shape minimizes

the strain energy. In general, there may be no deformation

that reduces the strain energy to zero everywhere, and

there will remain some residual strain. Another way of con-

ceptualizing this is that the specified growth defines a new

metric on the tissue, and the deformation is that which

aligns this metric as closely as possible (i.e. with minimal

strain energy) with the standard Euclidean metric [29].

Residual strain may be assumed to dissipate as fast as it

arises, or may be allowed to accumulate at a finite rate.

The physical mechanism of growth of plant tissue is gen-

erally held to be that cells enlarge by turgor pressure acting to

stretch cell walls whose elastic stiffness has been reduced,

which are then reinforced by the addition of wall material

[30]. In our framework, the specified growth of each cell-

sized region during a time step corresponds to the amount

by which the cell would incrementally yield in this way, if

it were unconstrained by the surrounding tissue. The resul-

tant growth of each region is then its equilibrium

conformation given the constraint that the whole tissue

remains continuous.

The discarding of residual strain after each time step

amounts to treating the resultant deformation as an irrevers-

ible plastic flow. Thus, the framework treats growth as a

viscoelastic process [31]. The amount of plasticity may be

reduced by retaining all or part of the residual strain.

Specified growth rates are assumed to be set by morphogens

that are produced or removed at certain locations, and may dif-

fuse through the tissue and react with each other. These

processes are modelled by partial differential equations, which

are solved by numerical methods. The sheets are one finite

element thick, and growth is specified as being oriented

normal to the plane of the sheet (growth in thickness) ororiented

within the plane (planar growth). Anisotropic growth within

the plane can be specified through a polarity field, established

by taking the local gradient of a diffusible factor called POL.

Specified growth rates may then be given parallel (kpar) or

perpendicular (kper) to the gradient of POL. Sheet curvature

may arise as it reduces potential growth conflicts [1,32].

To extend this framework to volumetric growth, several

challenges need to be met. First, methods are required for

dynamic local subdivision of finite elements growing in

three dimensions, in order to maintain the computational

quality of the mesh as it is deformed. Second, anisotropic

growth orientations need to be specified through an internal

mechanism, rather than by pre-assigning growth to be within

or normal to the plane of a sheet. Third, growth patterns

should be validated by examples that allow analytical
solutions. Here, we address these problems and apply the

volumetric framework to several case studies, illustrating

how additional tissue constraints arise in bulk tissue com-

pared with sheets, and how a variety of forms, including

sheets and outgrowths, can be generated.
2. Results
2.1. Volumetric finite-element meshes
Modelling the growth of two-dimensional sheets is in some

ways simpler than modelling growth in three-dimensional

volumes, because growth orientations are specified in relation

to the plane of the sheet (i.e. growth parallel to the plane and

growth in sheet thickness). This difference influences the

choice of finite-element shapes. For sheets, we employed

finite elements in the shape of warped triangular prisms

[18], illustrated in figure 1. Sheets are one element thick (mod-

elling sheet thickness directly rather than by thin shell

methods), with the triangular ends of the prisms corresponding

to the two surfaces of the sheet.

For solids of arbitrary shape, tetrahedral elements are

more convenient. Any shape can be decomposed into

tetrahedra (figure 1 shows an example), whereas other

finite-element shapes are less flexible. A further advantage

of tetrahedral elements is that they are more amenable to

local dynamic remeshing (discussed below). All of the solid

three-dimensional models described in this paper use

meshes of tetrahedra.

For simplicity of coding, we have implemented only

first-order (linear) elements, as employed previously for

modelling sheets [18]. That is, the geometry of an element

is determined by its corner vertices, and there are no

additional vertices along its edges, within its faces or in its

interior. Each quantity of interest, such as the concentration

of a morphogen, is represented by its values at the vertices

of the elements, and conceptually interpolated over the

volume of each element. Each step of the simulation calcu-

lates the specified deformation of each finite element at

certain points in its interior, and the result of the calculation

is a displacement of every vertex. This displacement is then

applied, and a new simulation step begun.

The constitutive equations, which define the relevant

physical properties of the tissue (elasticity and diffusion),

are the same as those previously used (see [18] and the

electronic supplementary material to the present paper).

The numerical implementation applies them to general

tetrahedral meshes instead of a single layer of pentahedra.

2.2. Dynamic refinement
Differential regional growth can lead to the accumulation of

very large differences in element size over a mesh. Anisotro-

pic growth can also produce elements that are very thin in

one or two dimensions. These phenomena can reduce

numerical accuracy. To maintain the quality of the decompo-

sition into finite elements, it is necessary from time to time to

subdivide or reorganize parts of the mesh, by splitting large

elements into smaller ones and eliminating very thin

elements, while maintaining the outer shape, the continuity

of the mesh and the distribution of morphogens across the

mesh.



(a)

(b)

Figure 1. (a) A curved sheet divided into 1536 warped triangular prisms (image reproduced from [18]). (b) Successive cutaway views of a solid sphere divided into
7120 tetrahedra.

(b)

(a)

(c)

(d )

Figure 2. Dynamic subdivision of a triangular mesh. Splitting one (a), two
(b) or three (c) edges of a triangle in a surrounding mesh, and splitting an
arbitrary subset of the edges in a mesh (d ). New vertices are drawn in red on
the left and new edges added to maintain a triangular mesh are drawn in red
on the right.
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This process of dynamic remeshing involves splitting

finite elements in such a way that all daughter elements are

of the same type as the parents (e.g. all tetrahedra, or all

prisms). Dynamic remeshing of a growing sheet of triangular

prisms is relatively straightforward, as we only need to con-

sider subdividing the triangular surface mesh (there are no

subdivisions within the thickness of the sheet). If we wish

to split a single edge of a triangle by introducing a new

vertex (figure 2a), we can simply split the triangle on each

side into two. Similarly, splitting two or three edges with

new vertices (red in figure 2b and c, respectively) can create

daughter triangles by joining to surrounding vertices. If an

arbitrary set of edges is to be split, we can find for each tri-

angle a subdivision into smaller triangles that splits exactly

the desired edges (figure 2d).

Dynamic subdivision of a tetrahedral mesh involves

establishing new connectivities with vertices in three dimen-

sions. For example, figure 3a shows a mesh comprising five

tetrahedra around a common edge (drawn in red). The

individual tetrahedra are shown in an ‘exploded view’ in

figure 3b. If we split the common edge by introducing a

new vertex (also shown in figure 3a), then all five of the

tetrahedra must be split in two as illustrated in figure 3c.

The 10 tetrahedra are shown in exploded view in figure 3d.

However, if an arbitrary subset of the edges of a tetrahedron

are to be split, then it becomes more complicated. When a

face of a tetrahedron is split, and that face is shared by

a second tetrahedron, then that tetrahedron must be split in

a way that gives the same splitting of the common face in

order to maintain consistency of the finite-element decompo-

sition. There are further transformations, such as merging the

ends of very short edges, that would be useful to maintain

the quality of the mesh but implementing these is not

straightforward (see electronic supplementary material).

We implemented dynamic subdivision of the tetrahedral

mesh for the following cases.

(1) Only one edge is to be split (figure 4a).

(2) A pair of opposite edges is to be split (figure 4b).

(3) The three edges of one face are to be split (figure 4c).

(4) Every edge is to be split (figure 4d ).
We do not implement cases where at least one face of a

tetrahedron contains exactly two of the edges to be split, as

in the front face of the example in figure 4e. The reason is

that, while in cases (a–d ) there is a natural choice of how to

subdivide each face of the tetrahedron, in cases such as (e)

there are two different ways to split the face. Another tetra-

hedron will share that face and must give it the same

subdivision. Coordinating these divisions while searching



(b)

(a) (c)

(d )

Figure 3. Dynamic subdivision of a mesh of tetrahedra. (a) Initial mesh of
five tetrahedra around a common edge (shown in red) to be split with a new
vertex. (b) Exploded view of the initial mesh. (c) Result of splitting. (d )
Exploded view of the result.

(e)

(b)

(a)

(c)

(d )

Figure 4. Implemented cases of subdivision. (a – d ) Left column: initial tetra-
hedron with newly introduced vertices (red). Middle column: division into
tetrahedra. Right: exploded view. (a) Only one edge is to be split. (b) A pair
of opposite edges are to be split. (c) Three edges of one face are to be split.
(d ) Every edge is to be split. A tetrahedron is sliced off each corner of the original,
leaving an octahedron which is then sliced into four more tetrahedra around one
of its diagonals. (e) Example of a case that is not implemented. Two adjacent
edges are to be split. There are two ways to split the face containing these
edges into triangles. The tetrahedron on the other side of that face must split
it in the same way. This coordination of splitting complicates the implementation.

flat

butterfly

original

Catmull–Clark

(a)

(b)

(c)

Figure 5. Two iterations of three methods of subdivision: flat (a), butterfly
(b) and Catmull – Clark (c). The original mesh is superimposed in red on the
subdivided meshes.
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for one that will best maintain the quality of the mesh is a

complex problem.

To ensure that we only deal with cases (a–d ), when we

have identified a set of edges that should be split because

of their length, we eliminate edges from the set until the

required splitting of each tetrahedron matches one of those

cases. The edges left unsplit can be dealt with by repeated

applications of this process.

For meshes made of pentahedra (warped triangular

prisms) and hexahedra (warped cubes), dynamic remeshing

is more difficult. It is easy to subdivide every element simul-

taneously into smaller elements, but to refine some arbitrary

subset, while maintaining consistency across shared faces, is

not necessarily possible, unless one allows meshes that mix

different shapes of element. The number of special cases of

thin elements of these shapes is also large. Therefore, while

our software supports pentahedral and hexahedral elements,

we have not implemented remeshing for these elements.

As described in [18], when we subdivide sheet meshes,

new vertices are in general not placed at the midpoints of

the split edges, because this would tend to preserve the flat-

ness of every triangle (figure 5a). Instead, we use a method

drawn from computer graphics called butterfly subdivision

[33] (figure 5b). This method considers the triangular mesh

to be an approximation to a continuous curved surface, and

attempts to place the new vertex on that surface by suitably

offsetting it from the midpoint. For volumetric meshes, we

use simple bisection for edges in the interior, but butterfly

subdivision on the surface.

Many subdivision methods exist in the graphics literature

[34]. For our purposes, butterfly subdivision has the essential

property that the refined mesh includes all of the vertices of

the original mesh. This is not the case, for example, for the

more widely used Catmull–Clark subdivision [35], where

none of the original vertices lie on the refined mesh, and

which tends to shrink the mesh as it is refined (figure 5c).

The Catmull–Clark method also produces quadrilaterals,

regardless of what polygons the original mesh was made of.



0
0
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0 1
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0.4

(b)

(a)

(i) (ii) (iii) (iv) (v)

(c)

Figure 6. Isotropic specified growth in a sphere of unit radius (with respect to arbitrary units of space and time). (a) Uniform growth rate, (b) growth rate is r2 and
(c) growth rate is 1 2 r2. Each row shows (i) the initial distribution of growth, (ii) the same in a hemispherical cutaway view, (iii) the growth distribution in the
final state, (iv) the total residual strain in the final state and (v) the initial radial displacement rate plotted against the initial radius for the finite-element solution
(blue dots) and an analytical solution (red line). Each dot represents a large number of vertices at the same initial radius, 12 245 vertices in total. Orange represents
specified growth rate, and magenta/green is the rate of generation of residual compression/tension. Scale bars are equal to the initial radius of the sphere, taken to
be 1 unit. The duration of growth is chosen to make the general pattern clear.
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The displacement of vertices prescribed by the butterfly

method should not be thought of as a deformation of the

finite elements, but as a remeshing that better approximates

the smooth-surfaced volume that is being modelled. There-

fore, if residual strain is present in the elements, it retains

its values during subdivision. The volume of a divided

element at the surface will increase slightly where the surface

is convex and decrease where it is concave, thus changing its

total strain energy, but the amount is slight and comparable

to the finite accuracy of the finite-element method itself.
2.3. Volumetric tissue conflicts
Using the finite-element system described above, we explore

the effects of various spatial patterns of specified growth on

the resultant growth and deformation. For growth of sheets,

tissue conflicts can be classified into three types: surface

(differential specified growth between the surfaces of the

sheet), areal (differential specified growth rates across the

sheet) and directional (variation in the orientation of specified

growth) [32]. For volumetric growth modelling, there is no

predefined sheet, so there is no category of surface conflict.

We, therefore, define only two types of conflict: regional
(conflicts arising through variation in specified volumetric

growth rates) and directional (conflicts arising from variation

in the orientations of specified growth). We investigate how

both regional and directional tissue conflicts may be resolved

and how this compares with the situation for growth of

sheets.
2.4. Isotropic specified growth
We first consider cases in which specified growth is equal in all

orientations. In this case, specified growth rates for each region

of tissue can be described with a scalar: the specified volu-

metric growth rate. Because of tissue conflicts, resultant

growth rates may include anisotropic and rotational (vorticity)

terms, and therefore require tensors to be fully represented.
2.4.1. Uniform isotropic growth

The simplest type of growth is uniform specified isotropic

growth, which produces an enlargement of the tissue, what-

ever its initial shape with no conflict or residual strain. This

is illustrated in figure 6a for a sphere. A latitude/longitude

grid is shown on the outside of the initial spherical tissue,



(b)

(a)

(i) (ii)

(c)

Figure 7. Isotropic specified growth in a disc of unit radius (shown obli-
quely), with the same three growth distributions as figure 6: (a) uniform,
(b) r2, (c) 1 2 r2. Each row shows (i) the initial distribution of growth
(orange) and (ii) the growth distribution in the final state. The finite-element
decomposition of the disc consists of a single layer of pentahedra ( prisms),
obtained by dividing a planar disc into triangles and giving them an initially
uniform thickness. Specified growth is still isotropic in all three dimensions. A
small initial perturbation (invisibly small in the picture of the initial state) is
given to each vertex of the finite-element mesh, to break the symmetry and
allow buckling to occur. Orange represents specified growth rate. Scale bars
are equal to the initial radius of the disc.
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and a section shown in a hemispherical cutaway. As

expected, the shape is unchanged after growth, there is no

residual strain and there is a good agreement with the

radial displacement obtained with the analytical solution.

Similar results are obtained with an initially circular sheet

(figure 7a).

In this and in all of the following figures, units of space

and time are arbitrary. The initial shape is always a sphere

or disc of unit radius, or a cube or square of unit semi-

diameter. Growth rates have dimension 1/time. With respect

to the arbitrary time unit, maximum growth rates in the
examples are equal to 1. The simulations are computed

with a time step of 0.1 or less, so that the amount of specified

growth in any direction over a single time step is never more

than 10%. The duration of each simulation varies and is

chosen to make the general form of the development clear.

In images with scale bars, all scale bars have unit length. In

figures without, all images are to the same scale.

2.4.2. Isotropic growth varying along the radial axis

For many plant tissues, the outer epidermal layer is under

residual tension and the inner under residual compression,

suggesting differential specified growth along the inside–

outside axis [36]. We explore this pattern of growth by having

the rate of specified isotropic growth in our sphere depend on

the radial distance from the centre, creating regional conflicts.

In cellular terms, the notion of residual compression

does not mean that plant cell walls themselves are under

compression, only that the region of tissue is held at a

smaller size than it would otherwise take without the exter-

nal constraint. Thus cell walls will still be under tension

owing to osmotic pressure, even in the presence of residual

compression.

If the specified growth rate of the sphere increases with

radial distance (proportional to the square of the radius),

the shape remains spherical, with the inner core regions

experiencing residual tension, while the outer surface is put

under residual compression (figure 6b). The lack of shape

change contrasts with what happens if a circular sheet

rather than a sphere has the same pattern of specified

growth. For a disc, the outer rim of the sheet buckles

(figure 7b), resolving most of the residual strain. The

number and positioning of the ripples depends on the rapid-

ity of the increase of growth with radius, the initial

perturbation and the thickness of the sheet. (Since the initial

perturbation is random for (b), the buckling is different each

time this simulation is run.) Thus, compared with a sheet, the

constraint of the surrounding material in a solid sphere inhi-

bits regional conflict resolution through buckling. While

buckling can occur in a solid sphere ([29], ch 15), it requires

more extreme disparities in growth or elasticity properties

than it does in a thin sheet, where buckling will result from

even quite small amounts of residual strain.

If the specified growth rate of the sphere decreases with

radial distance (decreasing quadratically from a maximum

at the centre to zero at the surface), the shape again remains

spherical, but now the core regions experience residual com-

pression, while the outer surface is put under residual tension

(figure 6c), similar to the situation for some plant tissues.

With the same pattern of specified growth a circular sheet

buckles to form a cup shape (figure 7c), resolving most of

the residual strain except for some stretching near the rim.

These results illustrate how volumetric shapes are less able

to resolve regional conflicts through changes in curvature

than sheets, and thus have more constrained shapes.

The symmetry of these examples allows for an alternative

mathematical analysis, taking advantage of the symmetry to

reduce the problem to an ordinary differential equation.

When the growth rate is a sum of powers of the radius (includ-

ing non-integer powers), this equation can be solved explicitly

(see electronic supplementary material). This provides a check

on the correctness of the finite-element implementation.

Figure 6 includes graphs comparing the finite-element



(e) ( f )

(b)(a)

(c) (d )

(g) (h)

Figure 8. Non-uniform isotropic growth in a cube. Specified growth is zero
from the centre out to the face centres, thereafter increasing linearly with
radius to a maximum at the corners. All images are to the same scale.
(a – d ) Initial and final tissue with specified growth rate in orange, shown
as the entire volume (a,b) or section (c,d ). (e,f ) Residual strain shown as
a section (e) or entire volume ( f ). Magenta indicates compression; green ten-
sion (almost invisibly low, but present in the central region). (g,h) Vorticity.
The magnitude of the rotation rate (g) is indicated by the intensity of red. (h)
Rotation rate about one of the coordinate axes (indicated by the black line),
with red representing anticlockwise rotation when viewed looking along that
axis, and blue clockwise.
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calculations with the analytical solutions. The displacement

rate is plotted against the radius in the initial state. The analyti-

cal solutions are respectively r, 0.4r þ 0.2r3 and 0.6r 2 0.2r3.

The sphere shows no overall change of shape in these

examples (it remains a sphere), owing to the common spheri-

cal symmetry of the tissue and the growth pattern. Radial

growth patterns can produce shape change in other volu-

metric shapes, such as cubes. Figure 8a–d illustrates the

result of a growth rate applied to a cube, which is zero every-

where from the centre of the cube out to the distance of the

face centres, thereafter increasing linearly with radius to a

maximum at the corners. Unlike the sphere, there is a

shape change, and protrusions form at the corners. There is

reduced residual compression towards the corners as these

have the most freedom to deform into the surrounding
space (figure 8e,f ). A further difference from the sphere is

presence of vorticity. For spheres with a radial gradient of

growth, there was no rotation of the deforming tissue (zero

vorticity everywhere). Each point moves only in the radial

direction. However, vorticity is generated for the cube

(figure 8g). The direction of rotation with respect to a particu-

lar axis is shown in figure 8h. The vorticity reflects changes in

curvature, which reduce residual strain. The opposite pattern

of specified growth rate reducing with distance from the

centre of a cube would tend to stretch and flatten the corners.

These comparisons between a sphere and a cube illustrate

how introducing asymmetries (e.g. corners with more space

around them to grow into) gives greater freedom for curva-

ture and changes in shape to arise through regional conflicts.

2.4.3. Isotropic growth varying along a linear gradient

If a linear gradient of isotropic specified growth is set up in

a cube (figure 9a), and is thereafter fixed in the tissue and

moves with it, the cube deforms (figure 9b). The resultant

growth is not locally isotropic. The transformation in

shape exhibits both vorticity (figure 9e) and some residual

strain (figure 9f ). The same specified growth pattern with

a square sheet yields a locally isotropic (conformal) map-

ping (figure 9c,d ). In this case there is still vorticity (figure

9g) but negligible residual strain (figure 9h), showing that

potential regional growth conflicts have been largely

resolved. Thus, compared with the growth of sheets, the

growth of volumetric shapes provides additional con-

straints, making it more difficult to fully resolve regional

conflicts. This is also evident from the Riemann mapping

theorem, which shows that in two dimensions isotropic

mappings exist between almost any two shapes that do not

have holes. In three dimensions, there are by comparison

very few such mappings.

If a linear gradient of isotropic growth is incorporated in a

sphere, rather than a cube, a flattening or indentation at the

base is generated (figure 10a,b). The residual strain pattern

shows the indentation to be under residual tension while

the sides are under residual compression (figure 10c). The

shape change depends on the nature of the growth gradient.

If a gradient in specified growth rate is set up from a source at

the ‘north pole’ with diffusion and decay, an egg shape is

generated (figure 10d– f ).

2.5. Anisotropic specified growth along one field of
orientations

We now consider the forms of growth that can arise when

specified growth is anisotropic. In this section, we consider

anisotropic growth oriented by one polarity field established

through diffusion of a morphogen termed POL.

2.5.1. Polarity field

To model anisotropic specified growth of sheets, three

orthogonal axialities are defined: parallel to rPOL (kpar) in

the plane of the sheet, perpendicular to rPOL (kper) in the

plane of the sheet and normal to the plane of the sheet

(growth in thickness, knor) [18]. However, this assumes

prior information that defines the plane of the sheet. For volu-

metric growth, sheets may be an outcome of growth rather

than a precondition. A more general formulation is, therefore,



(e) ( f )

(b)(a) (c)

(d )

Figure 10. Gradients of isotropic specified growth in a sphere. (a – c) A linear gradient from bottom to top, showing a cutaway of the initial and final states, and
residual strain in the final state. (d – f ) Gradient set up from a source at the ‘north pole’ with diffusion and decay. All of the gradients are first set up and then
remain fixed in the tissue without further diffusion. The resulting forms are similar if diffusion continues throughout. Orange represents specified growth rate, and
magenta/green is the rate of residual compression/tension.

(e) ( f )

(b)(a) (c) (d )

(g) (h)

Figure 9. Linear gradient of isotropic growth. Specified linear growth rate varies from zero at the left to a maximum at the right. (a,b) Result of linear growth
gradient applied to a cube, showing initial (a) and final (b) tissues. Orange colour scale indicates the specified volumetric growth rate. (c,d ) Result of linear growth
gradient applied to a thin square, showing initial (c) and final (d ) tissues. (e) Vorticity about the indicated axis for the grown cube. ( f ) Residual strain for the grown
cube. (g) Vorticity in the plane for the grown thin square. (h) Residual strain for the grown thin square (negligible). Angles are preserved (conformal mapping) and
there is negligible residual strain and no buckling. Growth perpendicular to the plane is zero and the same random initial perturbation is applied as for the disc
examples in figure 7. Orange represents the specified growth rate; magenta/green is the rate of residual compression/tension; red/blue is anticlockwise/clockwise
rotation about the indicated axis.
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needed to specify growth orientations. With a gradient of a

single morphogen POL, we may define a specified growth

rate parallel to rPOL (kpar), and a plane of directions perpen-

dicular to this gradient. Within that plane there can be an

isotropic growth rate kper (figure 11).
2.5.2. Growth patterns

We consider first the simplest form of a polarity field, a uni-

form linear gradient across a block, with a uniform growth

rate (figure 12). The source of POL (plus-organizer or



kpar

kper

Figure 11. A single axis of polarization allows one growth rate to be defined
parallel to it (kpar, black) and one to be defined that is isotropic in the per-
pendicular plane (kper, orange).
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þORG, green) and sink (minus-organizer or 2ORG, cyan)

occupy opposite faces, giving a parallel polarity field (a). Uni-

form kpar elongates the block along the field (b). Uniform kper

generates a sheet (c). In both cases, residual strain is zero as

there is neither directional nor regional conflict.

It is straightforward to generate a parallel polarity field

in a rectilinear form such as a cube. However, with many

forms, the polarity field will curve to follow the shape. For

example, if organizers are positioned at opposite poles of a

sphere, the polarity field will diverge or converge at the

poles (figure 13a). If uniform specified growth is parallel to

the polarity, the sphere elongates to form an ellipsoid with

pointed ends. Conversely, if uniform specified growth is

perpendicular to the polarity, the sphere deforms into a

squashed disc concave at the poles. If a source of polarizer

is used without a sink (i.e. no minus-organizer, figure 13b)

but with the polarizer undergoing decay, uniform kpar still

gives a pointed ellipsoid, whereas uniform kper yields a

cup-shaped disc.

A slightly different outcome is generated by using an equa-

torial (midplane) plus-organizer with polarizer that decays

(figure 13c). Uniform kpar still generates a pointed ellipsoid,

but uniform kper generates a flat sheet. Thus a midplane organi-

zer provides a simple mechanism for generating a sheet even

from an initially curved volume. Using two orthogonal mid-

plane organizers (figure 13d) from which POL diffuses, with

positive kper, this generates two intersecting sheets. Thus

through directional conflict alone, it is possible to generate

single sheets, or sheets with further sheets growing out of them.
2.6. Anisotropic specified growth along two
orientation fields

In general, anisotropic growth can be defined locally by a set

of three orthogonal axes (the principal axes) and three growth

rates (the principal growth rates) along the respective axes. The

gradient of a single polarity field defines only one axis,

leaving all directions perpendicular to the gradient in a

symmetrical relationship with each other. To break that
symmetry, a second polarity field is required, defining a

second axis. The third axis can then be defined as their

common perpendicular. We, therefore, introduce two polariz-

ing morphogens, which we shall call POL and POL2, whose

gradients (rPOL and rPOL2) specify two polarity fields. In

general, these gradients will not be perpendicular to each

other, but principal strain axes necessarily are. One approach

to obtain perpendicular axes is to stipulate that rPOL is one

of the principal axes, and the projection of rPOL2 onto the

plane perpendicular to rPOL is the second. In this case,

one of the polarities is primary (rPOL) and the other second-

ary (rPOL2). The specified growth rates along the three

principal axes of the specified growth tensor are designated

kpar, kpar2 and kper (figure 14).

2.6.1. Growth patterns

Consider a cube with two orthogonal polarity fields. The orga-

nizers for POL are on opposite faces (þORG green, 2ORG

cyan), generating a parallel polarity field (figure 15a, black

arrows). A gradient of POL2 is established through organizers

on another pair of opposite faces (þORG2 magenta, 2ORG2,

yellow), giving an orthogonal polarity field (figure 15b, blue

arrows). The common perpendicular to both polarity fields

is indicated with orange lines (figure 15c). If specified

growth rates are uniform, with kpar . kpar2 . kper we get the

block shown in figure 15d, in which length . height .

width. Blocks of different dimensions may be generated by

varying the three values of specified growth and the duration.

Because growth is uniform and the polarity fields are parallel,

there is no growth conflict and residual strains are zero.

With an initial sphere, the shape changes are less intui-

tively predictable because of directional conflicts resulting

from curvature of the polarity field. Also, the polarity fields

for POL and POL2 may not be everywhere orthogonal. Con-

sider a case where a horizontal midplane þORG defines a

polarity field for POL (figure 16a,b); whereas the organizers

for POL2 are at opposite points on the equator (figure

16c,d ). If kpar ¼ 0, and there is uniform kpar2 ¼ kper, we

obtain a disc-shaped sheet (figure 16e), as specified growth

is isotropic in the plane perpendicular to POL.

If kpar ¼ kper ¼ 0, and kpar2 is uniform, we obtain a solid

cylinder with POL2 arrows running from one end to the

other (figure 16f ). However, if kpar ¼ 0 and kpar2 . kper, we

obtain an oval sheet (figure 16g). From a genetic perspective,

if we consider the latter as a wild-type shape, then setting

kper ¼ 0 is equivalent to radialized mutant which has lost

the ability to generate a sheet. Conversely, setting kpar2 ¼

kper is equivalent to a symmetrical mutant in which the

length and breadth of the sheet are identical.

Leaf-like shapes can be generated by restricting kper in the

region destined to be the base of the leaf. Two different ways

of doing this are shown in figure 16h–k, yielding two differ-

ent leaf shapes. The smooth gradient illustrated in (h) yields

the slender taper shown in (i), while setting kpar2 to zero

near one end and 1 in the remainder gives a more defined

petiole shape ( j–k).

To illustrate how this approach can be used to model pro-

cesses that could not be captured using sheets alone, we

modelled the formation of solid outgrowths from a leaf,

observed in the kanadi1 kanadi2 double mutant of Arabidopsis
[37]. These outgrowths arise in leaf primordia at positions in

the epidermis where planar polarity, as revealed by PIN1,



(b)(a) (c)

Figure 12. Anisotropic growth of a solid cube with a single polarizer. (a) Initial cube with polarity field. (b) Result of uniform positive kpar and zero kper: an
elongated block. (c) Result of uniform positive kper and zero kpar: a sheet. þORG is green, 2ORG is cyan, and orange indicates uniform kpar or kper.

initial state
(full)

initial state
(cutaway) kpar only kper only

(b)

(a)

(c)

(d )

Figure 13. Anisotropic growth of a sphere. Growth is uniform, and either parallel or perpendicular to POL. (a) POL is created by diffusion between a source (þORG,
green) and a sink (2ORG, cyan) in small regions at opposite poles. Positive kpar creates a pointed ellipsoid. Positive kper creates an indented disc. (b) POL is created
by diffusion and decay from a source at the upper pole. Positive kpar gives a pointed ellipsoid. Positive kper gives a cup. (c) POL is produced by a source in an
equatorial region, diffuses and decays. Positive kpar gives a pointed ellipsoid. Positive kper gives a flat sheet. (d ) POL is produced by two vertical midplanes at right
angles to each other. Positive kpar gives a star shape, whose points are in the diagonal directions. Positive kper gives two interpenetrating sheets. The cutaway views
here show the lower half of the tissue. The upper half is symmetric. Orange represents the specified growth rate, green þORG and cyan 2ORG. The arrow fields can
be more clearly seen under enlargement.
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converges. A subepidermal strand of PIN polarity also forms

and runs through the centre of the outgrowth. To model this

process, we modified the model used in figure 16h,i, by grow-

ing it to a primordial stage, and then introducing a 2ORG for
POL2 to create a site of planar polarity convergence (figure

17a). We also created a strand of þORG for POL, running

from the convergence site towards the midplane (figure

17b). Both kpar2 and kper were also increased in the



kpar2

kpar
kper

Figure 14. Two axes of polarization allow one growth rate to be defined
parallel to each (kpar, black, and kpar2, blue) and one to be defined that is
perpendicular to both (kper, orange).
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neighbourhood of the þORG strand (figure 17c,d ). With

these assumptions an outgrowth formed, centred on the

þORG strand (figure 17e,f,h). This model is beyond the capa-

bility of the earlier version of GFtbox, which was limited to

sheet-like meshes which could vary in thickness, but did

not support changes of form beyond that.
3. Discussion
The volumetric growth modelling framework presented here

is more general than that previously developed to model

growth of tissue sheets [18]. Rather than presupposing a

sheet-like configuration, with growth being defined parallel

to the tissue plane or normal to it, sheets and other tissue

forms are generated as an outcome of growth. A major differ-

ence between sheet and bulk tissues is that the growth of bulk

tissue is more geometrically constrained. Every point of a

sheet has empty space close by, into which tissue can move

to reduce residual strain generated by growth conflicts. By

contrast, with bulk tissues regions may be constrained by

material all around them, reducing the possibilities for con-

flict resolution by geometrical deformation. Thus, a radially

increasing rate of isotropic growth for a circular sheet can

lead to a reduction in residual strain by buckling to form a

wavy edge, whereas the same pattern of growth for a solid

sphere leads to higher levels of residual strain and no shape

change. Similarly, a linear gradient of increasing specified

isotropic growth across a square sheet generates a conformal

deformation with little or no accumulation of residual

strain, whereas a similar pattern of growth for a cube is

non-conformal and generates some residual strain.

For many plant tissues, such as the shoot apex or hypoco-

tyl, surgical incisions have shown that the epidermal layer is

under residual tension whereas the internal tissue is under

residual compression [36]. If specified growth is isotropic,

this situation would correspond to specified growth rates

being higher for internal than for outer tissue layers.
However, epidermal tension can also be generated by uni-

form anisotropic growth oriented radially, showing that

levels of residual tension alone cannot be used to infer pat-

terns of specified growth. Orientations as well as the level

of residual stresses could be helpful in distinguishing

between different possibilities. Incisions could be

implemented in GFtbox, and have been for sheet-like

models, but we have not yet implemented this for volumetric

models.

The shape deformations generated through differential

specified isotropic growth depend on both the initial starting

shape and the pattern of growth. For example, whereas a

radially increasing specified growth rate leads to no shape

change for a sphere, it leads to a cube forming outgrowths

at the corners. This is because the corners are less constrained

by surrounding bulk tissue. Conversely, if the specified

growth rate decreases radially, the corners of a cube

become less sharp, resolving some of the residual strain.

The pattern of growth is also important. A linear gradient

of specified growth rate across a sphere (from pole to pole)

leads to the formation of a dimpled shape, whereas a more

restricted region of higher specified growth leads to an egg

shape. In both cases, the region of high growth comes to

dominate the tissue more and more. This raises the question

of how meristematic domains, such as those in the shoot or

root apex, maintain a relatively fixed size in the face of

growth.

Although differential isotropic specified growth can

create a range of shape deformations, some are much

harder to achieve. For example, transforming a sphere into

a sheet is not straightforward through isotropic specified

growth alone (though it may be possible). By contrast, the

transformation can be readily achieved through specified ani-

sotropic growth oriented by a polarity field. For example, if

specified growth is high perpendicular to a polarity field

defined by a midplane organizer, a sphere deforms into a

sheet. Growth parallel to the polarity corresponds to

growth in sheet thickness whereas growth perpendicular to

the polarity corresponds to growth in the plane of the

sheet. This view is consistent with experimental studies on

genes controlling leaf abaxial/adaxial asymmetry [38].

These genes establish a midplane domain of WOX expression

which is thought to be critical for establishing planar growth

[39,40]. From a cellular perspective, the higher specified

growth rate perpendicular to the polarity field corresponds

to cell walls being less reinforced in these directions than par-

allel to the field. However, whether a polarity field of this

type exists and how it may influence cell wall stiffness

remains to be established [41].

Although a single polarity field allows for many shape

transformations, it only allows two of the three components

of a specified strain tensor to be defined. Thus, it would

not be straighforward to generate a leaf that is much longer

than it is wide. Such transformations can be readily achieved

through inclusion of a second polarity field, orthogonal to the

first. Applying such fields to a sphere allows an elongated

leaf-like sheet to be generated, with one polarity field becom-

ing oriented in the plane of the sheet (planar polarity) and

the other oriented normal to the sheet (orthoplanar polarity).

Polarly localized proteins such as PIN and BASL provide evi-

dence for a planar polarity field in leaves [42,43]. Loss of the

orthoplanar polarity field (e.g. midplane organizer) leads to

reduced outgrowth of the blade or lamina [39,40]. Ectopic



(e) ( f )

(b)(a) (c) (d )

(i)

(k)( j)

(g)

(h)

Figure 16. Generation of shapes from a sphere with two polarizers and uniform growth rates. (a,b) A midplane þORG (green) defines a polarity field for POL. (c,d )
Organizers for POL2 are at the front left and rear right of the equatorial plane (þORG2, magenta, 2ORG2, yellow). (e) If kpar ¼ 0, and there is uniform kpar2 ¼ kper,
we obtain a disc-shaped sheet. ( f ) If kpar ¼ kper ¼ 0, and kpar2 is uniform, we obtain an elongated cylinder. (g) If kpar ¼ 0 and kpar2 is greater than kper, we obtain an
oval sheet. (h) Giving kper a gradient from left to right in the model for (g) yields a leaf-like shape (i). ( j ) Setting kper instead to zero in a neighbourhood of þORG2
gives a different leaf-like shape (k). Orange indicates the growth rate, and specifically kper in (h – k). All except (a,c) are shown sectioned in the equatorial plane. POL2
arrows are shown in (e,f,g,i,k).

(b)(a)

(c) (d )

Figure 15. Doubly anisotropic growth of an initial cube. (a) þORG (green) and 2ORG (cyan) with rPOL (black arrows). (b) þORG2 (magenta) and 2ORG2
(yellow) with rPOL2 (blue arrows). (c) The common perpendicular of the two gradient fields (orange lines). (d ) The result of uniform specified growth of different
amounts along each of the three direction fields, kpar . kpar2 . kper.
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(e) ( f )

(b)(a) (c) (d )

(g)

Figure 17. The model of figure 16h,i, modified by initiating an outgrowth. (a – d ) At the time when the outgrowth is initiated, in cross-section. (a) rPOL2 and its
plus and minus organizers, (b) rPOL and its plus organizer, (c) kpar2, (d ) kper. (e,f,g) The subsequent development, showing kper and rPOL2.
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activation of a strand of the midplane organizer can lead to

the formation of radial outgrowths, as we show by modelling

the formation of leaf outgrowths in the kanadi1 kanadi2 double

mutant of Arabidopsis. There is evidence for a radial polarity

field in roots [44,45], but evidence for a midplane polarity

field has yet to be obtained.

Dynamic subdivision is more complex in the volumetric

finite-element framework. In two dimensions, there is a

small repertoire of local transformations that eliminate low-

quality finite elements. However, in three dimensions, the

number of cases to consider is much larger, and the trans-

formations are much more complex. Moreover, validity

constraints (e.g. always generating the same geometric class

of element) complicate the task of locally transforming the

mesh to improve quality. Our implementation is in this

respect still incomplete: we have implemented only the sim-

pler cases of dynamic subdivision and not incorporated

elision of short edges. This need not imply that division of

biological cells is more difficult to achieve in volumes than

sheets. This is because biological cell division is not
constrained by having to always generate the same geometric

class. To model biological cells with a finite-element frame-

work, multiple elements would be needed for each cell,

introducing additional complexity.

In conclusion, our analysis shows that the finite-element

framework used to model tissue sheets can be extended to

model volumetric growth. This extension highlights the

additional constraints brought about through growth in

three dimensions, and also provides a basis for studying

the generation of tissue sheets or other conformations that

have previously been taken as starting points.
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