
Report
Ectopic BASL Reveals Tiss
ue Cell Polarity
throughout Leaf Development in Arabidopsis
thaliana
Graphical Abstract
Highlights
d Ectopic expression of BASL in Arabidopsis leaves reveals

coordinated polarity

d The ectopic BASL polarity field is independent of the stomatal

lineage

d The polarity field reorients around serrations, mirroring PIN1

polarity
Mansfield et al., 2018, Current Biology 28, 2638–2646
August 20, 2018 ª 2018 The Author(s). Published by Elsevier Ltd
https://doi.org/10.1016/j.cub.2018.06.019
Authors

Catherine Mansfield,

Jacob L. Newman, Tjelvar S.G. Olsson,

Matthew Hartley, Jordi Chan,

Enrico Coen

Correspondence
jordi.chan@jic.ac.uk (J.C.),
enrico.coen@jic.ac.uk (E.C.)

In Brief

Mansfield et al. demonstrate a

coordinated tissue cell polarity field in the

Arabidopsis leaf epidermis revealed by

ectopic expression of BASL. This polarity

field is independent of the stomatal

lineage and reorients around serrations,

mirroring the polarity of PIN1.
.

mailto:jordi.chan@jic.ac.uk
mailto:enrico.coen@jic.ac.uk
https://doi.org/10.1016/j.cub.2018.06.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2018.06.019&domain=pdf


Current Biology

Report
Ectopic BASL Reveals Tissue Cell Polarity
throughout Leaf Development
in Arabidopsis thaliana
Catherine Mansfield,1 Jacob L. Newman,1,2 Tjelvar S.G. Olsson,1 Matthew Hartley,1 Jordi Chan,1,* and Enrico Coen1,3,*
1John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
2Present address: School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
3Lead Contact
*Correspondence: jordi.chan@jic.ac.uk (J.C.), enrico.coen@jic.ac.uk (E.C.)

https://doi.org/10.1016/j.cub.2018.06.019
SUMMARY

Tissue-wide polarity fields, in which cell polarity is
coordinated across the tissue, have been described
for planar organs such as the Drosophila wing and
are considered important for coordinating growth
and differentiation [1]. In planar plant organs, such
as leaves, polarity fields have been identified for
subgroups of cells, such as stomatal lineages [2],
trichomes [3, 4], serrations [5], or early develop-
mental stages [6]. Here, we show that ectopic induc-
tion of the stomatal protein BASL (BREAKING OF
ASYMMETRY IN THE STOMATAL LINEAGE) reveals
a tissue-wide epidermal polarity field in leaves
throughout development. Ectopic GFP-BASL is typi-
cally localized toward the proximal end of cells and to
one lobe of mature pavement cells, revealing a polar-
ity field that aligns with the proximodistal axis of the
leaf (base to tip). The polarity field is largely parallel to
the midline of the leaf but diverges in more lateral po-
sitions, particularly at later stages in development,
suggesting it may be deformed during growth. The
polarity field is observed in the speechless mutant,
showing that it is independent of stomatal lineages,
and is observed in isotropic cells, showing that cell
shape anisotropy is not required for orienting polar-
ity. Ectopic BASL forms convergence and diver-
gence points at serrations, mirroring epidermal PIN
polarity patterns, suggesting a common underlying
polarity mechanism. Thus, we show that similar to
the situation in animals, planar plant organs have a
tissue-wide cell polarity field, and this may provide
a general cellular mechanism for guiding growth
and differentiation.

RESULTS AND DISCUSSION

Ectopic BASL Reveals a Polarity Field Independent of
Stomatal Lineages
Asymmetries across individual cells (cell polarity) can be coordi-

nated across a tissue to give tissue-wide polarity fields [7]. Polar-
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ity fields have been invoked to account for patterns of oriented

growth of planar organs, such as leaves [8]. Mathematically, a

polarity field corresponds to each position in space having a vec-

tor (a vector field) [9]. In biological terms, these positions may

correspond to individual cells. However, evidence for a tissue-

wide polarity field maintained during planar plant organ develop-

ment has been lacking.

Several proteins preferentially localized to one end of the cell

(i.e., exhibiting cell polarity) have been described in plants,

including PIN-FORMED (PIN) proteins, BASL (BREAKING OF

ASYMMETRY IN THE STOMATAL LINEAGE), BRXL2 (BREVIS

RADIX-LIKE 2), POLAR (POLAR LOCALIZATION DURING

ASMMETRIC DIVISION AND REDISTRIBUTION), OCTOPUS,

BORs (BORON TRANSPORTERS 1), and NIPs (NODULIN26-

LIKE INTRINSIC PROTEINS) [2, 10–14]. Some of these proteins,

notably PIN1 and BRXL2, exhibit polarity coordination in the

developing leaf epidermis. PIN1 is preferentially localized at

the distal end of cells in leaf primordia, but this pattern disap-

pears at later developmental stages [6, 15]. BRXL2 shows pref-

erential localization to the proximal end of cells in the stomatal

lineage [2], compounded by a spiral pattern of polarity switching

involved in stomatal spacing [16].

Here, we use BASL to explore polarity patterns in developing

leaves. BASL has a well-characterized polarity pattern that is

similar to BRXL2, localizing to a crescent in stomatal lineage cells

[2] [16]. Localized BASL domains have also been described in

root cells ectopically expressing BASL [11].

To see if a polarity field could exist across the leaf indepen-

dently of the stomatal pathway, we exploited the speechless

(spch) mutant, which lacks stomatal lineages. We induced

expression of 35S::GFP-BASL using a heat-shock-inducible

Cre-lox system [17] to avoid potentially pleiotropic effects of

overexpressing BASL throughout development [11].

Ectopically induced BASL was asymmetrically localized in leaf

epidermal cells of spch (Figure 1A). Signal typically spanned cell

vertices (three-way junctions, Figure S1F), allowing assignment

to individual cells. In pavement cells, signal was typically

observed in a single lobe, toward the proximal end of the cell.

To quantify the polarity pattern, we assigned cell unit vectors

that pointed from the midpoint of the BASL crescent signal to

the cell centroid (Figure 1B). To avoid subjective bias, we

randomly rotated automatically segmented single cells before

BASL signal was manually identified (Figures S1G–S1O). Pro-

cessed cells were then returned to their original position and
thor(s). Published by Elsevier Ltd.
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Figure 1. Ectopic BASL Reveals a Polarity Field Independent of Stomatal Lineages

(A) Induced 35S::GFP-BASL in speechless leaf stained with propidium iodide (PI). Scale bar is 50 mm in right panel.

(B) BASL vectors (orange arrow) assigned from BASL crescent to cell centroid. a between midline vector (black arrow) and BASL vector.

(C–E) Ectopic BASL vectors colored according to color wheel (in C) indicating a orientation in speechless leaves of (C) 50–200 mm, (D) 200–400 mm, and (E)

400–800 mm width categories. Leaf outlines shown.

(F–H) Vector orientation in speechless leaves pooled from widths (F) 50–200 mm (n = 185 cells, 4 leaves, s = 55.34), (G) 200–400 mm (n = 1199 cells, 12 leaves,

s = 49.43), and (H) 400–800 mm (n = 2063 cells, 9 leaves, s = 44.68). 0� represents proximodistal vector. Scale bars are 100 mm except for the right panel of (A).

See also Figure S1.
orientation. The BASL vector orientation was calculated with

respect to the proximodistal midline vector of the leaf (Figure 1B)

and plotted according to a color map (Figure 1C). We refer to the

resulting vector field as the ectopic BASL polarity field.
At all developmental stages analyzed, BASL vectors were

largely proximodistally oriented in spch (i.e., BASL localized to-

ward the proximal end of cells; red/orange arrows in Figures

1C–1E). Some vectors deviated from this proximodistal pattern,
Current Biology 28, 2638–2646, August 20, 2018 2639
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particularly toward the leaf tip, though very few vectors pointed

proximally (Figures 1C–1E). BASL vector orientations from mul-

tiple spch leaves were pooled according to leaf size and plotted

in histograms (Figures 1F–1H). More than 90% of the BASL vec-

tors were within the range of�80� to 80�. Thus, ectopic BASL re-

veals a strongly coordinated proximodistal polarity field across

leaves of different sizes that is independent of stomatal lineages.

The Polarity Field Revealed by Ectopic BASL Is Present
in Wild-Type Leaves
Given that ectopic BASL reveals a proximodistal polarity field in

spch, wemight expect a similar field to be present in the non-sto-

matal lineage cells of wild-type leaves. To test this hypothesis,

35S::GFP-BASL was induced in a wild-type background at

different developmental stages (Figures 2A–2D). As in spch,

ectopic BASL was predominantly observed at the proximal

end of cells, often at cell corners (Figure 2C) or within single-

pavement cell lobes (Figure 2D). These cells included those

above the midvein, which do not develop stomatal lineages

[18]. Proximal localization was confirmed from analysis of sec-

tors of BASL expression (Figures S1A–S1E), and by polarity

quantification (Figures 2G–2N).

BASL is not normally expressed outside stomatal lineage cells,

suggesting that ectopic BASL expression either induces polarity

or reveals a polarity field that does not itself depend on BASL

function. If ectopic BASL induces polarity, we might expect

signal to gradually coalesce on a proximal domain following in-

duction. Time-lapse imaging leaves after heat-shock induction

showed that, rather than coalescing, ectopic BASL appeared

in its proximal location from approximately 12 hr after heat-

shock induction and gradually intensified (Figure S2). This sug-

gests that ectopic BASL does not itself induce cell polarity but

rather marks a pre-existing polarity.

We hypothesize that ectopic BASL binds to interacting part-

ners—for example, proteins or lipid domains—that are located

proximally in each cell throughout development. We refer to

these hypothetical interacting partners as providing a proximal

molecular address. Localization of BASL to cell corners or to a

single lobe of pavement cells may reflect a single address

located at the proximal extrema of the cell. It is also possible

that positioning of the proximal address is modulated by factors

establishing lobe and neck formation [19–21] or located at cell

corners.

The proximal address may be held at a fixed length or in-

crease in length as the cell grows. To distinguish these possi-
Figure 2. Ectopic BASL in a Wild-Type Background and BASL::GFP-BA
(A–D) Induced 35S::GFP-BASL in (A) 50–200 mmand (B) >800 mmwidth leavesma

RFP-PM in D.

(E) Length of BASL crescent against cell perimeter for leaves of various sizes.

(F) BASL crescent length as a proportion of cell perimeter.

(G–J) Ectopic BASL vectors colored according to color wheel (in G) in leaves of

(K–N) Vector orientations pooled in leaves of (K) 50–200 mm (n = 1042 cells, 15

400–800 mm (n = 890 cells, 4 leaves, s = 63.67), and (N) 800+ mm (n = 3642 cells

(O and P) (O) BASL::GFP-BASL leaf stained with PI and magnified in (P).

(Q) BASL vectors from leaf in (O) colored according to color wheel (shown in G).

(R) BASL vector orientations in BASL::GFP-BASL pooled from multiple leaves fro

(S) Percentage frequency of BASL vector orientations for induced 35S::GFP-BA

Each genotype pooled from at least 20 leaves from 50–800 mm. p < 10�5 for each

(G)–(I), (O), and (Q) and 20 mm in (C), (D), and (P). See also Figures S1 and S2.
bilities, we measured the length of the ectopic BASL domain

at different developmental stages in a wild-type background.

Domain length increased from �5 mm to �45 mm as cells

increased in size, but at a rate lower than the rate of increase

in cell perimeter (Figures 2E and 2F). This finding suggests

that the proximal address does not have a fixed size but may

be restricted through interactions with other factors in the

cell, consistent with a model of polarity establishment involving

intracellular partitioning [22].

The cytoskeleton has previously been associated with forma-

tion of cell polarity [23, 24]. To test if microtubules are required for

positioning ectopic BASL, we destabilized microtubules with

oryzalin before inducing BASL. In oryzalin-treated plants,

ectopic BASL was still polarized (Figures S3A–S3G), suggesting

that microtubules are not required for the polarization of BASL,

similar to BRXL2 [2].

Wild-Type Exhibits a Combination of Stomatal and Non-
stomatal Polarity Fields
For a comparable stage, the proportion of BASL vectors

outside the range of �80� to 80� was significantly higher for

wild-type than for spch (Table S1). To determine whether the

lower level of proximodistal coordination in wild-type was

caused by more variable BASL polarity orientation in stomatal

lineage cells, we imaged leaves expressing BASL::GFP-BASL

[11]. BASL was asymmetrically localized within individual cells,

as well as expressed in the nucleus (Figures 2O and 2P), as

previously described [11, 16]. Although not obvious from

inspection of a single leaf (Figure 2Q), when multiple leaves

were pooled, proximodistal coordination was observed for

BASL vectors in BASL::GFP-BASL (Figure 2R), as reported

for BRXL2 [2]. BASL polarity was significantly less coordinated

than for ectopic BASL in spch (Table S1). Wild-type back-

ground showed an intermediate distribution (Figure 2S and

Table S1), suggesting that it reflects a mixture of two patterns:

a strongly coordinated proximodistal pattern in non-stomatal

lineage cells and a weaker coordinated pattern in stomatal line-

age cells.

Two hypotheses may account for the weaker polarity coordi-

nation of the stomatal lineage. One is that the proximodistal

address becomes reoriented in stomatal lineage cells, and

ectopic BASL follows this pattern. Alternatively, stomatal lineage

cells contain two addresses (i.e., two regions with BASL-inter-

acting factors) that compete for ectopic BASL: a proximal

address and an address specific to stomatal lineages.
SL Show Coordinated Patterns throughout Development
gnified in (C) and (D), respectively. Cell outlines shown using PI staining in C and

(G) 50–200 mm, (H) 200–400 mm, (I) 400–800 mm and (J) 800+ mm widths.

leaves, s = 64.76), (L) 200–400 mm (n = 1464 cells, 9 leaves, s = 57.25), (M)

, 4 leaves, s = 52.71) widths.

m 50–800 mm width (n = 1319 cells, 21 leaves, s = 82.3).

SL in WT and speechless background and BASL::GFP-BASL.

pairwise chi-squared comparison (Table S1). Scale bars are 100 mm in (A), (B),

Current Biology 28, 2638–2646, August 20, 2018 2641



Figure 3. Ectopic BASL Polarity in a Wild-Type Background Becomes Divergent during Development and Is Present in Near-Isotropic Cells
(A) Downsampled vectors in leaf of >800 mm width plotted according to color map.

(B) Downsampled cell long axes for leaf in (A) plotted according to color map. Due to the long axes being tensors and not vectors, half of the color map is used.

(C) Close-up of individual cell orientations for leaf in (B). Scale bar is 20 mm.

(D) Orientation of cell long axis relative to leaf midline vector for leaf shown in (A) and (B). See also Figure S4.

(E) Schematic of an isotropic cell with BASL localized to the proximal end (left) and an anisotropic cell where BASL polarity vector has become deflected, even

though BASL position is unchanged (right).

(F) Leaf in (A) with BASL vectors for cells with eccentricity <0.6 plotted.

(G) BASL vector orientation for near-isotropic cells relative to leaf midline vector. Data pooled from 4 leaves of 800+ mm width.

(H) Leaf in (A) divided into regions with average BASL vector orientations in each section shown and plotted according to color map in (A) See also Table S2.

Scale bars are 100 mm except in (C).
The Polarity Field Becomes Divergent during
Development
To visualize the ectopic BASL polarity pattern more easily, larger

leaves were downsampled by averaging vector orientations us-

ing a grid (Figure 3A). This analysis showed that vectors in the

midvein region were highly coordinated in a proximodistal orien-

tation, while those in the proximal lamina diverged away from the

midvein toward the margin (Figure 3A). The ectopic BASL polar-

ity field shows striking similarities with a polarity field previously

proposed to account for orientations of growth [8]. In both cases,

the polarity field becomes divergent at later stages of develop-
2642 Current Biology 28, 2638–2646, August 20, 2018
ment. It has also been shown that the orientation of BRXL2 po-

larity is aligned with the orientation of subsequent growth [2].

These results suggest that polarity may provide orientation infor-

mation to guide growth.

However, this interpretation is complicated because of the

way polarity is assigned in relation to the centroid of the cell.

For example, suppose BASL is proximal in a circular cell (Fig-

ure 3E, left). If that cell becomes elongated diagonally (either

through growth or diagonal division), polarity will also become di-

agonal, even though there has been no change in the positioning

of the BASL signal (Figure 3E, right).



Figure 4. Ectopic mCherry-BASL Localizes

to the Opposite End of Cells to PIN1 Mirror-

ing Convergence and Divergence Points at

Serrations

(A) Induced 35S::mCherry-BASL in leaf primor-

dium. Arrows indicate manually assigned BASL

polarity based on curvature of the BASL crescent.

(B) PIN1::PIN1-GFP in same primordium as (A).

(C) mCherry-BASL and PIN1-GFP signals com-

bined. Yellow box indicates magnified region of

leaf. Scale bars are 20 mm in (A)–(C) and 10 mm in

close-up regions of (C).

(D) Induced 35S::mCherry-BASL at serration of

leaf 5. Arrows are manually assigned, and yellow

arrows highlight cells in which BASL is not proxi-

mally localized.

(E) PIN1::PIN1-GFP in same serration as shown

in (D).

(F) mCherry-BASL and PIN1-GFP signals com-

bined. Projections allow visualization of margin

cells. Scale bars are 50 mm in (D)–(F).

(G–I) Magnified regions of serration in (F) in

blue (G), yellow (H), and magenta (I) boxes,

respectively. z slices were selected to allow

visualization of cells due to curvature of serrations.

35S::mCherry-BASL (left), PIN1::PIN1-GFP (mid-

dle), and combined signals (right). White dotted

lines indicate leaf outline. Scale bars are 10 mm

in (G)–(I).

See also Figure S3.
To evaluate the effect of such cell shape anisotropy on polar-

ity measurements, we determined the orientation of the long

axis of each cell (Figures 3B and 3C). This showed that, on

average, cells were preferentially elongated in a divergent

pattern like that of the axial component of the ectopic BASL po-

larity field (Figures 3B and 3D), and this correlation was also
Current Bio
confirmed by calculating the angle be-

tween the BASL vector and the cell long

axis (Figure S4D). Thus, the divergent

pattern of the ectopic BASL polarity field

could be a consequence of cell shape

anisotropy and the way polarity is as-

signed to cells.

To test this possibility, we analyzed

the subset of cells from the wild-type

background, which had a nearly

isotropic shape (Figure S4). Ectopic

BASL vectors of these near-isotropic

cells showed a preferential proximodistal

orientation, including the splayed-out

pattern in the proximal region of the lam-

ina (Figures 3F and 3G). The leaf was

subdivided into regions, and average

vectors from the isotropic cells were

calculated. This also showed the splay-

ing out across the lamina (Figure 3H

and Table S2). Thus, the observed diver-

gent proximodistal polarity field is not

dependent on cell shape anisotropy,

consistent with cell polarity orientation
being a guiding factor rather than consequence of oriented

growth.

Ectopic BASL and PIN Mark a Common Polarity Field
The ectopic BASL polarity field resembles that for PIN1 localiza-

tion at early stages of leaf development, except that whereas
logy 28, 2638–2646, August 20, 2018 2643



BASL localizes proximally, PIN1 in epidermal cells localizes

distally [25]. It is possible that both polarity markers are part of

a common system, with PIN involved in early establishment of

polarity and ectopic BASL revealing a polarity that is maintained

through to later stages. To determine the relationship between

PIN1 and BASL localization, we developed a line with inducible

35S::mCherry-BASL also expressing PIN1::PIN1-GFP so that

both polarity markers could be visualized in the same cells,

though BASL signal was less uniform across the tissue than in

the inducible 35S::GFP-BASL line.

Induction of ectopic BASL in young leaf primordia showed that

it localized to the proximal end of cells (Figure 4A) at a time when

PIN1 was expressed. PIN1 had a broader distribution than

ectopic BASL at this stage, making its polarity harder to assign

(Figures 4B and 4C). Induction of ectopic BASL at later stages

showed that co-expression with epidermal PIN1 expression

was only observed in developing serrations (Figures 4D–4F). A

region of reversed ectopic BASL polarity (yellow arrows) was

seen at the distal edge of the serration, creating BASL conver-

gence and divergence points (Figures 4D and 4F–4I). This

BASL polarity pattern mirrors PIN1 convergence and divergence

points previously described [5], with BASL localizing to the

opposite end of the cell compared to that reported for PIN1. It

has been shown that the PIN1 polarity pattern at serrations de-

pends on a feedback loop involving auxin transport [5], suggest-

ing that the polarity revealed by ectopic BASL is coupled to the

same polarity-coordinating mechanism. To test the role of polar

auxin transport in BASL localization, we grew seedlings on naph-

thylphthalamic acid (NPA), an auxin transport inhibitor, before

inducing ectopic BASL. In NPA-treated seedlings, which ex-

hibited root and leaf shape phenotypes [26, 27], ectopic BASL

was still proximally localized (Figures S3H–S3M). The relation-

ship between PIN, auxin, and ectopic BASL localization can

vary, as ectopic BASL in roots has been shown to localize to

the same end of cells as PIN or the opposite end, depending

on the cell type and PIN family member [11].

Origin of the Polarity Field
The coordination of the proximodistal polarity field throughout

the leaf epidermis could be accounted for by mechanical and/or

chemical mechanisms [22, 24, 28–31]. The observation that

mechanical stretching of a leaf can deflect the polarity field, as

revealed by BRXL2 reorientation, indicates that tissue-wide me-

chanical forces can influence polarity [2]. However, the nature of

polarity as a vector (with an arrow head)means that tissue stress,

which has axiality but not polarity, is not sufficient to establish the

directional aspect of the vector field [32–34]; thus, a stress

gradient would be required [24]. Alternatively, a biochemical

mechanism, such as flux sensing or cell-cell coupling, may un-

derlie the coordination of the polarity field [22, 35, 36]. Such a

mechanism has the advantage of being uncoupled from the

stresses generated through differential growth [34].

In addition to influencing growth, the polarity field may also in-

fluence patterning and differentiation (e.g., trichomes [3, 4], sto-

matal patterning [16]). Orientation of both BASL and BRXL2 in

stomatal patterning exhibits proximodistal coordination, albeit

much weaker than observed for the non-stomatal lineage cells

in the spch mutant. Although polarity is critical for stomatal

spacing in Arabidopsis [16, 37], it is unclear why proximodistal
2644 Current Biology 28, 2638–2646, August 20, 2018
coordination would be functionally important. It is possible that

the coordination reflects evolutionary history rather than current

function. Stomatal patterning mechanisms vary among plant

species [11, 38–42]. By contrast, a proximodistal polarity field

may be a highly conserved system for orienting tissue growth

and transport [43–45]. Perhaps various elements of the proximo-

distal polarity system were co-opted for stomatal patterning in

different plant lineages. For the lineage leading to Arabidopsis,

co-option may have led to a polarity-switching mechanism and

the evolution of BASL. This hypothesis would account for why

BASL cross-reacts with the proximal address when ectopically

expressed. Other plant lineages, such as grasses, which exhibit

strong proximodistal coordination in stomatal patterning [38, 46],

might represent different ways of co-opting elements of a funda-

mental proximodistal field.

Thus, the proximodistal field described here may have pro-

vided key elements that were co-opted during evolution for

controlling patterns of differentiation and spacing. In addition,

it may provide a conserved system for orienting growth in planar

plant organs, similar to equivalent systems described for animal

development [1].
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Propidium Iodide Sigma-Aldrich Cat# P4170

Spe I Sigma-Aldrich 11008943001

BspEI New England

Biolabs

Cat# R0540S

ccdB-resistant one-shot E. coli ThermoFisher

Scientific

Cat# A10460

Difco agar Becton & Dickinson Cat# 214030

Oryzalin Sigma-Aldrich Cat# 36182

N-1-naphthylphthalamic acid (NPA) ChemService N-12507

Critical Commercial Assays

iDNA genetics copy number analysis iDNA genetics N/A

Experimental Models: Organisms/Strains

Heat-shock inducible BASL (35S::GFP-BASL) This paper N/A

BASL::GFP-BASL [11] N/A

RFP-plasma membrane (pm-rb) [47] CD3-1008

RFP-plasma membrane with inducible 35S::GFP-BASL This paper N/A

spch mutant (spch-1) [48] N/A

spch with inducible BASL (35S::GFP-BASL) This paper N/A

HS::Cre [17] N/A

PIN1::PIN1-GFP [49] N/A

Heat-shock inducible 35S::mCherry-BASL with PIN1::PIN1-GFP This paper N/A

35S::TUA6-GFP [50] N/A

Oligonucleotides

F_BOB_lox_speI (GGGACTAGTATCGCGGCCGCTTCGAAA) This paper N/A

R_BOB_lox_N (CTATACGAAGTTATACGCGTCTGT) This paper N/A

R3_BOB_lox_EcoRV (GGGATATCATAACTTCGTATAAAGTAT

CCTATACGAAGTTATACGCGTCTG)

This paper N/A

Recombinant DNA

pBOB vector [51] N/A

TOPO4 vector Invitrogen N/A

pB7WGC2 vector [52] (VIB Gent) N/A

GFP-BASL entry clone [11] N/A

Destination vector with lox-HDEL:CyPET:NOS-Terminator-lox

(Active blue destination vector)

This paper N/A

Software and Algorithms

cellfromleaves This paper Github; https://github.com/JIC-Image-Analysis/

cells-from-leaves

cellsfromleavestagger This paper Github; https://github.com/JIC-Image-Analysis/

cells-from-leaves-tagger

sampleArrows8 This paper Github; https://github.com/JIC-Image-Analysis/

cells-from-leaves/tree/master/matlab_scripts

cellLongAxisCorr7 This paper Github; https://github.com/JIC-Image-Analysis/

cells-from-leaves/tree/master/matlab_scripts

VolViewer http://cmpdartsvr3.cmp.uea.ac.uk/wiki/

BanghamLab/index.php/Software#Viewing_

and_measuring_volume_images:_VolViewer
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Enrico

Coen (enrico.coen@jic.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Growth conditions
Arabidopsis plants were grown on plates containing MS media (0.441% Murashidge & skoog including vitamins, 1% (w/v) glucose,

0.05% (w/v) MES, 1%Difco agar, pH to 5.7) and relevant antibiotic selection. Seedswere gas or surface sterilized and stratified in the

dark at 4�C for 3 days, then grown at 20�C in long day conditions (16 hours light, 8 hours dark). Leaves were taken from plants up to

9 days after stratification for imaging and analysis.

Genetic material
The transgenic lines spch-1 [48], HS::Cre [17], BASL::BASL-GFP [11], RFP-PM [47], PIN1::PIN1-GFP [49] and 35S::TUA6-GFP [50]

are in the Col-0 background.

METHOD DETAILS

Construction of transgenic plants
We used Gateway cloning to construct heat-shock inducible 35S::GFP-BASL line which required a destination vector and an entry

vector. We made a destination vector (which we refer to Active Blue destination vector) containing a 35S promoter in front of a

CyPET:HDEL fluorescent marker and a Nos terminator flanked by lox sites. These lox sites will later allow heat-shock recombination

to remove the fluorescent marker so that the 35S promoter drives a downstream gene of interest.

The Active Blue destination vector was made using a pre-existing Gateway vector, pB7WGC [52] and the pBOB [51] vector. The

procedure involved 2 steps. In the first step, a 1175 bp fragment containing lox-HDEL:CyPET:NOS-Terminator-lox was cloned from

pBOB and flanked with SpeI and EcoRV sites using a 2-step PCR, involving the primers F_BOB_lox_speI and R_BOB_lox_N, then

primers F_BOB_lox_speI and R3_BOB_lox_EcoRV. The PCR product was then cloned into TOPO4. In the second step, the

pB7WGC2 vector was digested with SpeI and BspEI, to excise a 1175 bp fragment containing ECFP, and replaced with the fragment

cloned from pBOB vector (cut out from the TOPO4 vector using SpeI and BspEI). The ligation product was transformed into ccdB-

resistant one-shot E.coli.

To introduce GFP-BASL into the destination vector, an LR reaction (Invitrogen) was carried out using the Active Blue destination

vector and an entry clone containing GFP-BASL [11].

For transformation of Arabidopsis plants, Agrobacterium tumefaciens strain GV3101 and floral dip method were used [53] to dip

into HS::Cre [17] containing plants. Three independent lines were obtained showing the same pattern. The line used is a single copy,

single insert line (iDNA genetics).

The inducible 35S::BASL-GFP line was crossed to the heterozygous spch-1 mutant plants and offspring containing spch-1 and

inducible 35S::BASL-GFP were selected by phenotype and growing on selective plates (Basta for 35S::BASL-GFP, Kanamycin

for HS:Cre). The inducible 35S::BASL-GFP line was crossed to the RFP-PM line [47] and offspring containing RFP-PM and inducible

35S::BASL-GFP were selected by growing on selective plates and screening for RFP.

To make the line with inducible 35S::mCherry-BASL and PIN1::PIN1-GFP, we generated a construct containing inducible

35S::mCherry-BASL and HS::Cre using golden gate cloning and dipped [53] this into PIN1::PIN1-GFP [49] containing plants. The

line used contains 2 copies (iDNA genetics). The 35S::loxmCherry-BASLloxCyPET-HSP18::CRE-35S::Basta-35S::CyPET-RC12A

(called inducible 35S::mCherry-BASL for simplicity) construct was created by Golden Gate cloning in the vector pAGM4723

(Addgene #48015) as described byWeber et al. (2011). Level 0moduleswere domesticated to remove BsaI, BpiI and DraIII restriction

sites and synthesized synthetically. To generate the lox-flanked mCherry Level 1 module we adapted the standard Golden Gate pro-

tocol to incorporate an additional assembly step, termed Level 0.5. Here the vector backbone EC10161 is opened by the enzyme

Esp3I to allow the insertion of Level 0 modules cut by BsaI, just as for standard Level 1 cloning. This generates loxP flanked modules

in the ‘U’ position suitable for use in subsequent Level 1 assembly. Sequences to be used in loxP-flanked modules were domesti-

cated to be free of Esp3I sites in addition to BsaI, BpiI and DraIII recognition sites. Plasmid maps are available on request.

Propidium iodide staining
To stain leaves with propidium iodide, leaves were submerged in a 2.5 mg/ml propidium iodide solution (PI - Sigma) for at least

15 minutes before imaging.

Confocal microscopy
For confocal imaging, leaves (typically first true leaf other than for serrations) were placed in water under a coverslip, or in the optical

imaging chamber [54]. Imaging was performed using a x10 or x20 dry lens, or x40 oil lens, on a Leica SP5 confocal microscope

equipped with Leica HyD Hybrid detectors, or a Zeiss 780. For imaging GFP, argon ion (488 nm) excitation laser was used, collected
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at 495-530 nm. For PI, mCherry and RFP, 561 nm excitation was used, collected at 625-690 nm for PI, 575-630 for RFP and

600-620 nm for mCherry. Leaves were staged according to leaf width and were typically imaged 48-hours after heat-shock.

Seedlings were typically heat-shocked for 20 minutes to induce BASL across the entire lamina, and 3 mins to induce sectors.

To image 35S::GFP-BASL appearing after induction, 7 day old seedlings were heat-shocked for 20 mins and placed in an imaging

chamber with media as described in [55]. Leaves were imaged every hour using a Zeiss 780 confocal microscope, with the settings

described above.

Oryzalin treatment
Oryzalin was added to 6-day old seedlings (35S::GFP-BASL line described above and 35S::GFP-TUA6 as control line) at a concen-

tration of 20 mM. Seedlings expressing 35S::TUA6-GFP have previously been described [50]. 35S::TUA6-GFP seedlings confirmed

microtubules had depolymerized after 4 hours and seedlings were heat-shocked to induce BASL expression. Plants were imaged

48 hours after heat-shock, with 35S::GFP-TUA6 confirming the absence of microtubules.

NPA treatment
35S::GFP-BASL seedlings were grown on media containing 100 mM NPA, or an equivalent concentration of DMSO. Seedlings were

heat-shocked 2DAS and leaves imaged 3 days later. Propidium iodide staining (described above) was used to visualize cell outlines.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cells-from-leaves and cells-from-leaves-tagger software
For assigning BASL vectors, Python software was developed using jicbioimage [56]. It used the cell outline channel (either plasma-

membranemarker or PI stain) from the confocal stack tomake a projection of the leaf surface. The leaf surface projection was used to

reduce noise by only extracting signal from the volume occupied by the leaf. The cell outline channel extracted from the leaf surface

was then used as input to the watershed algorithm. Leaf-specific parameters allowed the surface and segmentation to be custom-

ised according to intensity and quality of image. The centroid for each cell was calculated. BASL signal was also extracted from the

cell surface.

To avoid bias arising from knowledge of the orientation and position of a cell within the context of the whole leaf, each segmented

cell was presented to the user in isolation, randomly rotated in one of four orientations (0, 90, 180, 270 degrees). For each cell the user

then selected a point in the middle of any visible BASL crescent, or chose to skip a cell if there was a complication (i.e., if the signal

was not easy to identify, or the cell segmentation was incorrect). For a sample leaf image, out of 162 cell assignments of BASL, 157

were based on three-way junctions, and 5 were based on concavity of the BASL signal. The tool produced a directory of JSON files

and corresponding image files, recording the BASL orientation in separate files for each cell, along with an image of the cell segmen-

tation. Lastly, BASL vectors were transformed back into the coordinate system of the whole leaf, and written out to a CSV file along

with the coordinates of each cell centroid.

sampleArrows8 software and cellLongAxisCorr7 software
Wedeveloped twoMATLAB scripts, one to allow us to quantify the BASL vector field (cellLongAxisCorr7.m) and one to visualize it in a

more informative way (sampleArrows8.m).

One script developed, sampleArrows8, is for visualizing BASL vectors on the leaf, and down-sampling them. This script uses a leaf

image and .csv file of BASL vectors (produced by ‘cells from leaves’). The user identifies the leaf midline which is used to rotate the

leaf image and BASL vectors to allow the image to be vertically oriented. The script contains various processing and display options,

but it is frequently used to display the original BASL arrows on the leaf, colored by orientation with respect to the leaf midvein. The

color of each arrow is determined by a color map, where 0 degrees represents the proximodistal orientation.

There can be a lot of BASL vectors on a leaf, with some areas having a very high density of points. BASL vectors can therefore be

down-sampled to reduce the total number of vectors displayed and to give a more even spread of BASL vectors across the leaf.

Down-sampling uses a triangular grid of points placed over the leaf. For each vertex of the grid, vectors within the distance Maxdist

are averaged. A parameter, neighborThreshold, ensures that down-sampled BASL vectors are only displayed for samples that

exceed the threshold number of BASL vectors.

This script can also be applied to cell orientations. This is achieved by gathering cell orientations within a certain radius, normalizing

and superimposing them onto the same axis, and then performing principle component analysis (PCA) on that cloud of points.

We also developed a script named cellLongAxisCorr7, which quantifies the BASL vector field. This script calculates various angles:

orientation of cell axis, angle between BASL vector and its cell axis, and angle between BASL vector and leaf midvein axis. This script

uses an image of the leaf and the directory of JSON files to rotate the cells back to their original orientation and cell masks are derived,

allowing cell eccentricity (ratio of the distance between the foci of the ellipse fitted to a cell and its major axis length), centroid and

orientation of the long axis of the cells to be determined.

For each cell, three angle measurements are made: the angle between the BASL vector (from the JSON files) and the cell long axis,

angle between the BASL vector and the leaf midline axis (specified by the user), and the angle between the cell long axis and the leaf

midline axis. Subsets of data can be selected by specifying lower and upper threshold values in the script parameters (for cell ec-

centricity and orientation relative to the leaf). The script displays the orientation information as histograms and also writes it out to
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CSV files for further analysis. To select the near-isotropic cells, we first calculated eccentricity of the segmented cells (cell eccentricity

is the ratio of the distance between the foci of the ellipse fitted to a cell and its major axis length). Cells with an eccentricity of less than

0.6 were considered near-isotropic.

Further documentation is found in both sampleArrows8.m and cellLongAxisCorr7.m. These scripts also contain a detailed expla-

nation of each of the input parameters.

Additional image analysis
BASL crescent length and cell perimeter were calculated by clicking round the BASL signal and cell outline using Fiji [57] measure tool

for cells of different sizes. To determine average BASL vector orientations for near isotropic cells in regions of the leaf,

cellLongAxisCorr7 was used with a maximum eccentricity value of 0.6, and vectors were visualized on the leaf using

sampleArrows8. The leaf was then subdivided into 9 regions and vectors measured in each region measured using Fiji angle tool.

Statistical comparison of BASL vector distributions between genotypes, was performed using chi-square tests (df = 1, p values

less than 0.01 were considered significant), comparing frequency of BASL vectors within or outside the range of�80� to 80�, in pair-

wise tests.

For z stacks of leaves expressing PIN1::PIN-GFP and 35S::mCherry-BASL, images were rendered in 3D using Volviewer. For

serrations, Fiji was used to create maximum projections for visualization. Specific ranges of z-slices were used to allow visualization

of specific cells.

DATA AND SOFTWARE AVAILABILITY

The custom code that implements the segmentation and random orientation pipeline (cells-from-leaves) is available at:

https://github.com/JIC-Image-Analysis/cells-from-leaves.

The tool for visualizing cell segmentations and selection of BASL signal in the cell (cells-from-leaves-tagger) is available at:

https://github.com/JIC-Image-Analysis/cells-from-leaves-tagger.

MATLAB software for visualization of vectors and angle calculation available at https://github.com/JIC-Image-Analysis/

cells-from-leaves/tree/master/matlab_scripts.

VolViewer available for download from http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/Software#Viewing_

and_measuring_volume_images:_VolViewer.

ADDITIONAL RESOURCES

Plasmid maps for lines generated and raw data for leaf images available on request.
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Figure S1. Vectors can be added to each cell using semi-automated software to show position of BASL signal with 

respect to the cell centroid. Related to Figure 1 and Figure 2. 

(A) 35S::GFP-BASL induced in small sectors across the leaf (magenta and yellow boxes) composed of a few cells. (B and 

D) Absence of ER-tagged CFP indicates where sectors are induced. (C and E) GFP-BASL signal in the sectors localised to 

the proximal end of the cells (BASL signal indicated by white arrowhead). White dashed line indicates leaf outline in A, 

cell outlines in sectors in B and D and sector outlines in C and E. (F) 3-way junctions between cells (white arrow head) 

show which cell the 35S::BASL-GFP signal belongs to. Scale bars are 100 µm in A and 20 µm in B-F. (G) Image processing 

pipeline (using ‘cellfromleaves’ and ‘cellsfromleavestagger’ software). (H) Raw confocal data is automatically segmented. 

(I) Individual cells are identified and position of centroid (cross) is extracted. Yellow arrows indicate cell rotation. (J) 

Individual cell is randomly rotated in one of 4 orientations. (K and L) BASL signal is identified from merged image of cell 

and separate colour channels for clearer visualisation. (M) BASL signal marked by hand (indicated by asterisk) to create 

vector, indicated by white arrow. (N) Cell and vector are rotated back into original position. (O) Process repeated for 

every segmented cell to produce a vector field for the leaf. White dashed line in H and O indicates leaf outline.  

 

 



 

 
Figure S2. Time lapse imaging after 35S::GFP-BASL induction. Related to Figure 2.  

(A) 35S::GFP-BASL induction in a wild type background following heat-shock at 3 (A), 14 (B), 16 (C), and 24 (D) hours after 

heat-shock. At 3 hours, no BASL is seen, comparable to uninduced leaves. Left hand panels show GFP-BASL expression 

appearing at the proximal end of cells with increasing intensity. Middle panels show ER-localised CFP outside the lox sites, 

coloured magenta for clear visualisation. Right hand panels show combined GFP-BASL and ER-CFP channels. Scale bars 

are 10 µm. Images are maximum projections of multiple z-slices to accommodate movement of the leaf during imaging.  



 

 
Figure S3. 35S::GFP-BASL localisation remains proximal in cells treated with oryzalin and NPA. Related to Figure 4. 

(A) 35S::Tubulin-GFP after treatment with 20 µM oryzalin for 4 hours showing microtubules depolymerised. (B) 

35S::Tubulin-GFP after equivalent treatment to A with DMSO. (C) 35S::Tubulin-GFP after treatment with 20 µM oryzalin 

for 2 days showing microtubules still depolymerised. (D) 35S::Tubulin-GFP after equivalent treatment to C with DMSO. 

(E, F) Examples of 35S::GFP-BASL induced in leaves treated with 20 µM oryzalin for 2 days. BASL signal is proximally 

localised. Cell wall stained with PI (red) in F. (G) 35S::GFP-BASL proximally localised in leaves treated with DMSO 

equivalent to E,F. Scale bars 10 µm in A-G. (H) Root of NPA (100µM) treated seedlings did not produce lateral roots or 

fully developed root hairs. (I) Leaf outline of NPA (100µM) treated seedlings did not produce a wild-type serration. (J) 

Root and (K) leaf outline of DMSO treated seedlings showing lateral roots and root hairs, and serration respectively. 

Dotted white line indicates leaf outline. Scale bars 100 µm in H-K. (L) 35S::GFP-BASL induced in leaves grown on 100 µM 

NPA remained proximal. (M) 35S::GFP-BASL induced in leaves grown on DMSO control. PI staining shows outlines. Scale 

bars in L-M are 50 µm. 



 

 

Figure S4. A cell with eccentricity of less than 0.6 was considered near isotropic. Related to Figure 3. 

(A) Schematic showing ellipse eccentricities. An eccentricity of less than 0.6 was considered to be near isotropic. (B) 

Examples of cell eccentricities showing cells regarded as near isotropic (except cell on far right with an eccentricity of 

0.9). Cell outlines shown in red by RFP-PM.  (C) Histogram showing cell long axis orientation relative to the midline vector 

for near isotopic cells (total from 4 leaves greater than 800 µm in width), showing that this subset of cells has no 

preferential orientation. (D) Histogram showing frequencies of angle between BASL vector and cell long axis (for leaf 

shown in Figure 3A), indicating correlation between BASL vector and cell long axis orientation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table S1. Two-way chi-squared tests for comparing BASL vector orientation across genotypes. Related to Figure 2. 

Chi-squared tests comparing BASL vector orientation across genotypes, based on number of vectors within the range -

80° to +80° compared to outside this range. ‘WT’ refers to inducible 35S::GFP-BASL in a wild-type background, ‘spch’ 

refers to inducible 35S::GFP-BASL in a speechless background, and ‘native’ refers to BASL::GFP-BASL. Note that as the 

distributions were not normal we used a non-parametric test. 

 

  

Genotype 
comparison 

n = BASL vectors inside -80 
to 80 range 

n = BASL vectors outside -80 
to 80 range 

n = leaf 
number 

Chi-squared 
(df=1) 

P value  

WT vs spch WT = 6025  
spch = 3169 

WT = 1013 
spch = 278 

WT = 33 
spch = 26 

85 p < 10-5 

WT vs Native WT = 6025 
Native = 888 

WT = 1013 
Native = 431 

WT = 33 
Native = 22 

260 p < 10-5 

spch vs Native spch = 3169 
Native = 888 

spch = 278 
Native = 431 

spch = 26 
Native = 22 

456 p < 10-5 



 

  

Top left Top 
middle 

Top right Mid left Mid 
middle 

Mid right Bottom 
left 

Bottom 
middle 

Bottom 
right 

-41.1 38.9 -19.3 -24.1 4.5 35.3 -40.5 -28.0 42.8 

-45.3 8.4 19.6 -57.4 -3.5 64.3 -60.4 -4.2 66.6 

3.7 11.6 -15.9 -28.0 -20.6 7.2 -36.6 -15.5 19.6 

-1.1 3.5 -26.6 -29.3 -13.2 25.0 -83.0 10.5 86.9 

 

Table S2. Average vectors from isotropic cells in regions of additional subdivided leaves shown. Related to Figure 3. 

The first row of data shows average vectors for regions of leaf shown in Figure 3H, the bottom 3 rows show average 

vectors for leaves in 3 additional leaves with widths greater than 800 µm. 
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